
1

Web Server Embedded Linux System

Vincent Sanders
Daniel Silverstone

Copyright © 2009 Simtec Electronics

• Linux is a registered trademark of Linus Torvalds.

• Unix is a registered trademark of The Open Group.

• All other trademarks are acknowledged.

While every precaution has been taken in the preparation of this article, the publisher assumes no responsi-
bility for errors or omissions, or for damages resulting from the use of the information contained herein.

Revision History
Revision 1.00 5th March 2009 VRS, DJAS

Initial Release.

Table of Contents
1. Introduction .. 1
2. Automated, reproducible, reliable building ... 1
3. Scripting builds and common tasks .. 2
4. Creating a web server's file system ... 2
5. What's next? ... 4
6. About the authors .. 4

This article describes how to construct a simple Linux-based embedded web server.

1. Introduction
This is the second article in a series demonstrating the fundamental aspects of constructing embedded systems.

In this article, we cover the construction of a simple web server with a command shell on the console.

This article, and indeed the whole series, assumes a basic understanding of a Linux-based operating system. While discussing
concepts and general approaches these concepts are demonstrated with extensive practical examples. All the practical exam-
ples are based upon a Debian- or Ubuntu-based distribution.

2. Automated, reproducible, reliable building
One of the common pitfalls in building embedded systems is the tendency towards too much manual involvement in the
build process. There seems to to be a misconception that because embedded systems are built, deployed and rarely updated
that building them by hand saves time that would otherwise be spent automating the process.

Making the build process automatic and repeatable should be viewed as a critical part of the project. This enables the software
engineers developing a product to have as short an edit, build and test cycle as possible. The desirability of a short develop-
ment process should be self-evident in that an engineer who can perform only one or two tests a day can only hope to debug
and fix a small number of issues where one who can perform a hundred tests can find and fix a far larger number of issues.

Another common mistake is not keeping the whole project in a Revision Control System (RCS). The benefits of revision
control on any project have become increasingly evident and a wide selection of extremely powerful systems exist. The
Subversion (svn) system is extremely popular for centralised RCS where Bazaar (bzr) and GIT have become common for
distributed RCS. Regardless of the model and tools chosen revision control should never be omitted from a project.

Web Server Embedded Linux System

2

For larger projects a centralised “build manager” is often desirable. This is a piece of software which builds the current
project from the revision control system on a regular basis. Some projects rebuild on every commit, this may not be practical
where a build takes an extended period of time. In such cases a system which rebuilds as often as it can, perhaps including
numerous commits, should be employed. The results of these builds should be made available, and the developers informed
as soon as possible of failures. This ensures the project is always in a state where it might be branched ready for formal
testing and release.

A good article discussing these ideas further is Daily Builds Are Your Friend [http://www.joelonsoftware.com/arti-
cles/fog0000000023.html] by Joel Spolsky. Although this article refers to application development specifically, its analysis
is valid on the larger project scale. Several other articles on best-practice for building software projects exist.

3. Scripting builds and common tasks
In the previous article we constructed an initramfs cpio-based system using the binaries of the host system. The steps were
performed manually, and were we to continue with that approach any increase in complexity would rapidly make it imprac-
tical.

To solve this issue we turn to the Unix system's scripting tools. A shell script to perform the build actions makes the build
easily repeatable and saves continually re-typing a lot of commands.

The mkbusyfs.sh [http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/mkbusyfs.sh] script is an automation of
the steps performed in the previous article.

In addition to the basic setup the script adds functions to copy executables and their library dependencies, configure a DHCP
client and copy kernel modules from the host to the target. These functions are straightforward and self-contained and their
operation should be obvious.

The script is written to be reusable for a number of projects by including a second “application” script. This enables us to
reuse the base functionality in future articles. The scripts are provided under a BSD-style licence and may be taken and
modified as desired.

To implement the simple system illustrated in the previous article, the simple.sh [http://www.simtec.co.uk/prod-
ucts/SWLINUX/files/mkbusyfs/simple.sh] configuration script can be used.

To keep things neat these scripts should be placed in a directory (these examples assume that it will be called mkbusyfs)
alongside where the output should be generated.

The simple system would be generated using the command ./mkbusyfs.sh simple and output would be placed in
simple.gz in the parent directory.

$ pwd
/home/dev/mkbusyfs
$./mkbusyfs.sh simple
Building simple
simple specific
Creating CPIO ../simple.gz
$ ls ..
mkbusyfs simple simple.gz
$

4. Creating a web server's file system
The first thing we must consider is which web server to install, this is of course dependant on our project requirements.

One choice might be the Apache Web Server, however this would be impractical for all but the largest embedded system.
Apache's executables, library dependencies and other system dependencies are relatively large. A more suitable alternative
would be thttpd which is a few hundred kilobytes and has very few dependencies.

First we need to create a mkbusyfs configuration script.

http://www.joelonsoftware.com/articles/fog0000000023.html
http://www.joelonsoftware.com/articles/fog0000000023.html
http://www.joelonsoftware.com/articles/fog0000000023.html
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/mkbusyfs.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/mkbusyfs.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/simple.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/simple.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/simple.sh

Web Server Embedded Linux System

3

#!/bin/sh
web server application specific mkbusyfs shell fragment

USE_DHCPC=y
EXTRA_LIBS="ld-linux.so.2 libnss_dns.so.2"
#KERNEL_VER=2.6.26-1-686
KERNEL_MODULES="kernel/drivers/net/ne2k-pci.ko \
 kernel/drivers/net/8390.ko \
 kernel/drivers/net/e1000e/e1000e.ko"

application_specific()
{
 DESTDIR=$1
}

This configuration enables the DHCP client (which will require an init script [http://www.simtec.co.uk/products/SWLIN-
UX/files/mkbusyfs/udhcp_default]) and lists the kernel modules to be copied into the output. These are required drivers for
network cards.

The project could be built and tested at this point if desired. It should initialise a system and acquire an IP address using DHCP.

Next the thttpd binary needs to be acquired. Instead of simply copying this from the host file system we can acquire the deb
package from the package mirror, unpack it and extract the items we require without needing to install the package on the
host. This does require the devscripts package to be installed but means no superuser privileges are required to build
the system.

#!/bin/sh
web server application specific mkbusyfs shell fragment

USE_DHCPC=y
EXTRA_LIBS="ld-linux.so.2 libnss_dns.so.2"
KERNEL_VER=2.6.26-1-686
KERNEL_MODULES="kernel/drivers/net/ne2k-pci.ko \
 kernel/drivers/net/8390.ko \
 kernel/drivers/net/e1000e/e1000e.ko"

application_specific()
{
 DESTDIR=$1

 CURDIR=$(pwd)

 mkdir -p /tmp/thttpd/thttpd
 cd /tmp/thttpd
 dget thttpd
 dpkg -x thttpd*.deb thttpd
 cd ${CURDIR}

 add_program /tmp/thttpd/thttpd/usr/sbin/thttpd /usr/sbin/thttpd

 rm -rf /tmp/thttpd
}

If we were going to add a second package it might be worth extracting this package acquisition and unpacking into a function.
Such judgements are of course arbitrary, but if something is done more than once it is often sensible to create a helper function
as then, if a change must be made, all the affected uses will be updated.

The next step is to add the configuration to start the web server and add some basic content. The complete script [http://
www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webserver.sh] may be downloaded.

http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/udhcp_default
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/udhcp_default
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/udhcp_default
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webserver.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webserver.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webserver.sh

Web Server Embedded Linux System

4

The only slight difference here is that an additional library and a /etc/passwd file was required so the web server could
change to execute as the www-data user.

When the output is generated it may be tested using QEMU again. The command line to run QEMU is slightly different as
it needs to enable a NIC and redirect the emulated systems port 80 to the host's port 8080. This allows the web server to be
accessed from the host using a web browser and the URL http://localhost:8080/.

$ qemu -kernel ./vmlinuz-2.6.26-1-686 -initrd webserver.gz \
 -append "root=/dev/ram" -net nic -net user \
 -redir tcp:8080:10.0.2.15:80 /dev/zero

The pre-built Kernel [http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/vmlin-
uz-2.6.26-1-686] and generated output [http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSys-
tem/webserver.gz] for an x86 system are provided.

5. What's next?
This second step demonstrates the ideas of automation and repeatability and shows how the basic environment constructed
in the previous article can be expanded to produce a system capable of interacting with a user.

The next step is to use the concepts presented here and expand them by introducing a more complex application built from
source and discussing some limitations of real hardware and issues that arise from it.

6. About the authors
Vincent Sanders Vincent is the senior software engineer at Simtec Electronics and has extensive expe-

rience in the computer industry. He has worked on projects from large fault tolerant
systems through accounting software to right down to programmable logic systems.
He is an active developer for numerous open source projects including the Linux ker-
nel and is also a Debian developer.

Daniel Silverstone Daniel is a software engineer at Simtec Electronics and has experience in architecting
robust systems. He develops software for a large number of open source projects,
contributes to the Linux kernel and is both an Ubuntu and Debian developer.

Simtec Electronics [http://
www.simtec.co.uk]

Simtec is a full solutions provider with a proven track record of helping clients with all
aspects of a project, from initial concept and design through to manufacturing finished
product. With 20 years in the industry, and producing ARM CPU modules since 1992,
Simtec's wide experience in embedded systems and the Linux kernel provide a strong
base on which to build custom hardware and software solutions, from the smallest of
USB devices to the largest complex Linux systems. Simtec's custom-off-the-shelf de-
sign service, utilising a range of pre-designed modules of various functions, allows for
rapid design and prototype turnaround, reducing time-to-market. Simtec also provide
a full software development consultancy with an extensive range of products from
boot loaders to full Linux based operating system environments and a range of devel-
opment boards showcasing Simtec's modular designs.

http://localhost:8080/
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/webserver.gz
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/webserver.gz
http://www.simtec.co.uk/products/SWLINUX/files/WebServerEmbeddedSystem/webserver.gz
http://www.simtec.co.uk
http://www.simtec.co.uk
http://www.simtec.co.uk

	Web Server Embedded Linux System
	Table of Contents
	1. Introduction
	2. Automated, reproducible, reliable building
	3. Scripting builds and common tasks
	4. Creating a web server's file system
	5. What's next?
	6. About the authors

