Web Kiosk Embedded Linux System

Vincent Sanders
Daniel Silverstone
Copyright © 2009 Simtec Electronics

e Linux isaregistered trademark of Linus Torvalds.
» Unix isaregistered trademark of The Open Group.
« All other trademarks are acknowledged.

While every precaution has been taken in the preparation of this article, the publisher assumes no responsi-
bility for errors or omissions, or for damages resulting from the use of the information contained herein.

Revision History
Revision 1.00 6th March 2009 VRS, DJAS
Initial Release.

Table of Contents

O [Lo o (8o 1o o RO 1
2. PUSHING The TIMITS ...ttt e ettt e ettt e et et b e e e e tb e e e ena e e e enaas 1
3. SEIECHING 8 DIOWSES ...ttt oottt e e ettt e e et et e et et et e e e 2
4. BUIIAING the DIOWSEN ... ettt et et b e ettt e e e et e e e et e e e ebe s 2
5. PULEING Tt @l TOGEINEY ...t ettt e et e et e e et e e e et 3
6. PULLING 1t ON @18l SYSIEM ..eiii ittt et e et e e et b e et e bt e e e e bt e e e e b s 4
T WWNEE'S NEXE? <. ettt e et oo ettt e et e e et et et e e e e s 4
8. ADOUL the GUENOIS ...ttt e e et e e et e ettt e ettt r e et et e e e et e e e e ba s 4

This article describes how to construct a simple Linux-based embedded web kiosk.

1. Introduction

Thisisthe third article in a series demonstrating the fundamental aspects of constructing embedded systems.
This article covers the construction of aweb browser with acommand shell on the serial console.

This document, and indeed the whole series of articles, assumes a basic understanding of a Linux-based operating system.
While discussing concepts and general approaches these concepts are demonstrated with extensive practical examples. All
the practical examples are based upon a Debian- or Ubuntu-based distribution.

2. Pushing the limits

So far in this series we have used binaries from the host system or from pre-packaged software. We will now expand this
to the inclusion of software built from source.

Aswill be demonstrated, thisinvolveslittle more effort than the previous examplesin terms of configuration script complexity
but will demonstrate the increasing burden of attempting to support additional methods of user interaction.

The primary cause of thisincrease in complexity comesfrom the additional kernel driver modules required to make the input
and output devices operational. We saw in the previous web server example that drivers were required for each network
card we wanted to support. For supporting two network cards (PCl NE2000 for QEMU and €1000e for a ThinkPad laptop)
we added three modules.

In this project we need the modules necessary to support the input event system and the drivers to run the hardware. To
support aminimal useful set, for mice and keyboards attached viaUSB HID and PS/2, the count runsto some el even modul es.

Web Kiosk Embedded Linux System

Thisis futher exacerbated by the need to have output using the framebuffer. To support the intelfb driver (for a Thinkpad
laptop) and the cirrusfb driver (for QEMU) requires an additional twelve modules.

As these numbers demonstrate, a relatively small increase in supported interfaces rapidly increases the number of drivers
required. We are also rapidly approaching the limits of what static module insertion is capable of and would need to start
dynamically loading modules according to what hardware is present.

3. Selecting a browser

To have aweb kiosk application we obviously need a browser. We could use attempt to run Firefox or a Webkit browser
using the X windows system but the dependencies for X and such a browser would make our resulting system huge which
isundesirable.

One posibility for improving the situation might be to use a graphics library other than X such as DirectFB with toolkit
support. This appears appealing at first glance but still requires alarge number of libraries and alot of software which is not
fregently tested and hence will probbaly contain numerous issues we have to solve.

Another possibility isabrowser which outputs directly to the Linux framebuffer. This posibility appeals as there is no need
for alarge toolkit and graphics library and browsers of this type tend to be smaller than their X based siblings.

After some searching, three candidate browsers which run directly on the Linux framebuffer were found:

Zen [http://www.nocrew.org/soft- A small browser which implements only basic layout. It removed itself from serious
ware/zen/] consideration asits author clearly states all devel opment has ceased.

Links [http://links.twibright.com/] ~ Thelinks browser isrelatively small and supports HTML 4, however its lack of CSS
support and various build issues reduce its appeal .

NetSurf [http://www.netsurf- The NetSurf browser has several build targetsincluding GTK so it might have been a

browser.org/] contender for the DirectFB and GTK type approach. In addition however it supports
severa framebuffer type display optionsincluding the Linux framebuffer. Itisin cur-
rent development and has support for HTML 5 and CSS although it lacks JavaScript
support.

Based on the available choices, NetSurf using the Linux framebuffer frontend was selected.

4. Building the browser

Building the NetSurf browser is suprisingly simple. Since the Linux framebuffer port has not been included in an officia
release it must be built from the project's Subversion repository. Thisis not generally recommended for embedded systems
but there islittle other option, at the time of writing.

First the NetSurf development trunk should be checked out using subversion:
$ svn co svn://svn.netsurf-browser.org/trunk/netsurf

Within the checkout (in the net sur f / directory) there is a document called Docs/ BUI LDI NG Fr anebuf f er which
describes the steps necessary to build the browser.

The summary of operations isto install and build the library dependencies, place a configuration makefile fragment in the
NetSurf directory and run make TARGET =framebuffer.

sudo apt-get install build-essential |ibcurl3-dev |ibxm 2-dev
sudo apt-get install |ibmg-dev |ibrsvg2-dev |enon

sudo apt-get install re2c |ibfreetype6-dev ttf-bitstreamvera
svn co svn://svn.netsurf-browser.org/trunk/Ilibnsbnp

sudo make -C |i bnsbnp install

svn co svn://svn.netsurf-browser.org/trunk/libnsgif

sudo make -C libnsgif install
svn://svn.netsurf-browser.org/trunk/libparserutils

sudo make -C |li bparserutils install

R R e e A T e A

http://www.nocrew.org/software/zen/
http://www.nocrew.org/software/zen/
http://www.nocrew.org/software/zen/
http://links.twibright.com/
http://links.twibright.com/
http://www.netsurf-browser.org/
http://www.netsurf-browser.org/
http://www.netsurf-browser.org/

Web Kiosk Embedded Linux System

$ svn://svn.netsurf-browser.org/trunk/hubbub
$ sudo make - C hubbub install
$ cd netsurf

The Makefil e. confi g. overri de should contain the lines:

NETSURF_FB_FONTLI B=f r eet ype
NETSURF_FB_FRONTEND=I i nux

This configures the use of the Linux framebuffer frontend and the FreeType 2 library for font handling. Once the compile
has completed it should produce an nsf b- | i nux binary.

5. Putting it all together

We will be using the same nkbusyf s. sh script from our previous examples, indeed you can continue using the previous
installation and simply add configurations as the series progresses.

The configuration script [http://www.simtec.co.uk/products/ SWLINUX/files'rmkbusyfs/webkiosk.sh] for the web kiosk sys-
tem is straightforward. The only especialy interesting item is the number of kernel modules which, as aready discussed,
has grown considerably.

The mkbusyfs.sh tool should be used to generate the webki osk. gz which can then be tested with QEMU. The QEMU
commandlineis slightly different to previous examples as it must redirect the console to a serial port so the video hardware
can be used for the graphical framebuffer.

genu -kernel ./vminuz-2.6.26-1-686 -initrd webki osk. gz \
- append "root =/ dev/ram consol e=ttyS0" -net nic -net user /dev/zero

Several issues were experienced with QEMU and only after resorting to installing the latest version from the QEMU Sub-
version repository was graphical output obtained. As can be seen the output is still not correct, it was not determined whether
this was another issue with the emulated video card or the browser.

Figure 1. QEMU video display

K H =15

d b ﬁ @ |http:i,ﬂﬁww.simtec.co.uk; |

S1iMTEC

ELECTRONICS

72 Products Services Support Company

Welcome

Welcome

Simtec Electronics is an experienced electronic developrment and design consultancy .

We have been trading since 1990 and our experience and Product Focus
expertise enables us to offer a wide range of products and

Services.

Cur bespoke product design and development allows for close
consultation with our custermers for both hardware and
software solutions. From the initial concept through to after
sales support services. All design aspects can be undertaken
‘in-house’. as can the majerity of the product manufacture.

Samsung 53C2410
evaluation board with Ciebian
GMULinux

We provide an extensive range of standard hardware and

software products that incdude ARM processor evaluation
boards . /0 modules, AELE firmware and an embedded
USE host stack .

CK i4.551 4/4 stylesheets 10/10 objects

http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webkiosk.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webkiosk.sh

Web Kiosk Embedded Linux System

The pre built Kernel [http://www.simtec.co.uk/products/SWLINUX /files/WebKioskEmbeddedSystem/vmlin-
uz-2.6.26-1-686] and generated output [http://www.simtec.co.uk/products/SWLINUX/files/'WebKioskEmbeddedSys-
tem/webkiosk.gz] for an x86 system are available.

6. Putting it on a real system

It was decided to test the system on areal machine. A Lenovo ThinkPad T61 was available. This machine has an Intel 915
chipset which is supported by the intelfb driver resulting in a usable graphical framebuffer.

Asinthefirst article, syslinux is used to make a USB stick bootable. Thesysl i nux. cf g used was:

defaul t webki osk
ti meout 100

prompt 1

| abel webki osk
kernel VM.I NUZ
append i ni t r d=WEBKI OSK r oot =/ dev/ram vi deo=i ntel fb vga=0x317

The laptop was booted from the USB stick and the web browser started as expected with the correct colours.

7. What's next?

Thisthird example extends the ideas from the previous two articles and produces a useful embedded system. It also demon-
strates that as the ways a user interacts with the system become more diverse the system's complexity rises. Finaly thereis
aalso an indication that as the target system's hardware becomes diverse (e.g. multiple possible video cards) the number of
drivers must also rise and unexpected behaviour is more likely to be experienced as demonstrated by the odd colours from
the QEMU video card emulation.

The next step will beto apply the web kiosk example to a specific embedded hardware platform and compare how this alters
the systems construction and usage.

8. About the authors

Vincent Sanders Vincent isthe senior software engineer at Simtec Electronics and has extensive expe-
rience in the computer industry. He has worked on projects from large fault tolerant
systems through accounting software to right down to programmable logic systems.
Heisan active devel oper for numerous open source projectsincluding the Linux ker-
nel and is also a Debian developer.

Daniel Silverstone Daniel isasoftware engineer at Simtec Electronics and has experience in architecting
robust systems. He develops software for a large number of open source projects,
contributes to the Linux kernel and is both an Ubuntu and Debian devel oper.

Simtec Electronics [http:// Simtecisafull solutions provider with aproven track record of helping clientswith all

www.simtec.co.uk] aspectsof aproject, frominitial concept and design through to manufacturing finished
product. With 20 yearsin theindustry, and producing ARM CPU modules since 1992,
Simtec's wide experience in embedded systems and the Linux kernel provide a strong
base on which to build custom hardware and software solutions, from the smallest of
USB devicesto the largest complex Linux systems. Simtec's custom-off-the-shelf de-
sign service, utilising arange of pre-designed modules of variousfunctions, allowsfor
rapid design and prototype turnaround, reducing time-to-market. Simtec also provide
a full software development consultancy with an extensive range of products from
boot loadersto full Linux based operating system environments and arange of devel-
opment boards showcasing Simtec's modular designs.

http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/vmlinuz-2.6.26-1-686
http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/webkiosk.gz
http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/webkiosk.gz
http://www.simtec.co.uk/products/SWLINUX/files/WebKioskEmbeddedSystem/webkiosk.gz
http://www.simtec.co.uk
http://www.simtec.co.uk
http://www.simtec.co.uk

	Web Kiosk Embedded Linux System
	Table of Contents
	1. Introduction
	2. Pushing the limits
	3. Selecting a browser
	4. Building the browser
	5. Putting it all together
	6. Putting it on a real system
	7. What's next?
	8. About the authors

