An ARM based web kiosk system

Vincent Sanders
Daniel Silverstone
Copyright © 2009 Simtec Electronics

e Linux isaregistered trademark of Linus Torvalds.
» Unix isaregistered trademark of The Open Group.
« All other trademarks are acknowledged.

While every precaution has been taken in the preparation of this article, the publisher assumes no responsi-
bility for errors or omissions, or for damages resulting from the use of the information contained herein.

Revision History
Revision 1.00 5th March 2009 VRS, DJAS
Initial Release.

Table of Contents

O [oo (B (o o T PP 1
S |1 To TR 1 =0 == o o 1
G @00) 1YL= e (g To TRt ST = 0] o] 1= 3
4, IMPIrOVING ThE PIrOCESS ...t iiitiiiei e e e et et e e e e e e e e e et et et e e et e e et e e ta e e aa e e et e e e e e e et e e an e ean e estneesnnaeeens 4
L Y= S 1= PP 5
LN oo U B 1 (= U 11 o = PP 5

This article describes how to construct a Linux-based embedded web kiosk for an ARM platform.

1. Introduction

Thisisthe fourth article in a series demonstrating the fundamental aspects of constructing embedded systems.
Thisarticlecoversthetargeting of theweb kiosk system from the previousarticle to aspecific ARM based hardware platform.

This document, and indeed the whole series of articles, assumes a basic understanding of a Linux-based operating system.
While discussing concepts and general approaches these concepts are demonstrated with extensive practical examples. All
the practical examples are based upon a Debian- or Ubuntu-based distribution.

2. Scaling the design

The previous articles have not required any additional hardware, indeed by using the QEMU emulator we have been able
to keep all the examples confined to the realm of software.

Itisrare however for an embedded system to have no limits on its hardware resources. In fact, it iscommon for aproject brief
to severely limit the available hardware platform, generally through cost and size, but increasingly through power usage. The
cost and size limits are self evident however the power limitation bears a closer examination.

Embedded systems like the web kiosk example are generally in afixed location which presents the opportunity to have afull
mains power connection. In this situation why might power consumption be an issue?

The primary emerging reason isthat running electrical cabling for power to these systemslimits their location and may have
high cost implications. If, instead, the systems can be powered entirely from a single data cable, using low voltages, they
become much more flexible.

A second consideration which has gained greater significance in recent times is that of environmental impact. Appliance
applicationswhere the unit is powered for extended periods of time, and must always be available, by their very nature have a

An ARM based web kiosk system

large environmental impact. A PC might consume 100W on average, over aday that builds up to 2.4KWh or some 876KWh
per year, which equates to roughly 400kg of coal or 377kg of carbon dioxide released into the atmosphere (conversion fac-
tors from DEFRA [http://www.defra.gov.uk/environment/busi ness/envrp/conversion-factors.htmy]). If we produce a system
which can operate from just 12W, we reduce the yearly figure to just 105kWh or 45kg of carbon dioxide. A side effect of
thisis, obviously, reducing the electricity bill by over 80% which makes economic sense.

Figure 1. Web Kiosks

The obvious power supply method for anetworked system isto use Ethernet cabling employing the | EEE 802.3 Power-over-
Ethernet (PoE) standard. This however introduces a maximum available power of 12 Watts (24W for the much less common
|EEE 802.3at standard). Running a standard PC and LCD monitor from 12W is simply not possible with current available
technologies.

If the project brief calls for an integrated display we may plausibly use a directly connected LCD panel in afashion similar
to alaptop. By using a directly connected panel, the refresh rate may be lowered significantly, which could reduce power
draw. A direct connection also removes the need for power sapping line drivers which are required for standard monitors to
connect over long cables. This approach might let us reduce the display power requirementsto around 10W. Thisonly leaves
2W budget for the computer, clearly a PC of any description cannot operate within such a power budget and an alternative
solution must be sought.

The most common low-power computing platforms are currently based upon ARM System On Chip (SoC) devices. These
devices operate at a few hundred megahertz instead of the gigahertz speeds found in PCs and consume a fraction of the
power. There are numerous SoCs available, in a huge array of hardware solutions, and selecting the correct one for a given
application is something to be discussed in afuture article. One important factor in selecting asuitable system for devel oping
aLinux solution is it must have kernel support. A useful reference for what systems are supported in current ARM Linux
kernelsis the KAutobuild [http://armlinux.simtec.co.uk/kautobuild/] project.

For the purposes of this article a Simtec Electronics thin client system [http://www.simtec.co.uk/productsBBD20EUROA/
intro.html] with a400MHz Samsung SoC module [http://www.simtec.co.uk/products/| M2440D20/] has been selected. This
system provides reasonable CPU performance coupled with a GPU capable of driving large screens. This hardware would
be capable of being directly connected to an LCD panel as discussed previously, and has sufficient power supply flexibility
to have PoE functionality added if required.

An important idea which should be highlighted here is that, for many embedded applications, suitable hardware is often
already available. Embedded projects often start with afaulty premise that they will need bespoke hardware sol utions specif-
ically for their application.

http://www.defra.gov.uk/environment/business/envrp/conversion-factors.htm
http://www.defra.gov.uk/environment/business/envrp/conversion-factors.htm
http://armlinux.simtec.co.uk/kautobuild/
http://armlinux.simtec.co.uk/kautobuild/
http://www.simtec.co.uk/products/BBD20EUROA/intro.html
http://www.simtec.co.uk/products/BBD20EUROA/intro.html
http://www.simtec.co.uk/products/BBD20EUROA/intro.html
http://www.simtec.co.uk/products/IM2440D20/
http://www.simtec.co.uk/products/IM2440D20/

An ARM based web kiosk system

Often existing products can be modified or extended to produce completely acceptable results at a fraction of the cost. It is
especialy important to be realistic about the volumes of a product. A product which will have small production volumes
will by definition have a higher per unit cost when the Non Recurring Engineering (NRE) cost is amortised over all the
units produced. Thus, although purchasing and customizing an existing product may have arelatively high per unit cost,
the NRE will be much lower.

To make this clearer let us use areal example. For a hundred units the thin client system selected costs GBP200 per system
(approximately USD300) or GBP20,000 pounds total. A fully bespoke design from Simtec Electronics for a system of
equivalent complexity would cost approximately GBP40,000 and have a manufactured per unit cost around the GBP150
mark for small runs. For a hundred unit run this means the bespoke approach has a unit cost of GBP550, indeed the GBP200
per unit cost is not arrived at until almost 300 units have been produced. Thisisatrivia example and includes no NRE cost
for required software, such as a boot-loader and a Linux kernel port, which the pre-built system aready includes, and no
budget for contingencies or specification changes.

The practical result of thisis that, for fewer than a thousand units, the “customized off-the-shelf” approach nearly aways
makes economic sense.

3. Converting the example

The method we have employed so far is to use a shell script to copy binaries from a host system and generate an initramfs
cpio archive to boot. Just because we have changed architecture there is absolutely no reason not to continue in this way.

Because the board has no local storage attached (there is provision for such; we are simply not using it) the instructions
for bootstrapping the system [http://www.simtec.co.uk/products/ SWDEBIAN/files/debootstrap-article.pdf] with a Debian
armel installation accessed via NFS were followed. This produced a system we can develop on in exactly the same way as
our x86 host previously. Because Debian provide support for numerous architectures, this approach can be used just about
anywhere that a Linux kernel, with the appropriate options, can be started.

The actions to build the browser were identical to those in the previous article. Indeed because no graphical environment
was installed, the NetSurf browser could be run directly from the NFS mounted system.

The configuration script [http://www.simtec.co.uk/products/ SWLINUX /files/mkbusyfs/webkiosk-arm.sh] for the ARM web
kiosk systemisvery similar to the original. The main differenceisin the number of modulesrequired. It isdrastically reduced
because a specifically-configured pre-built kernel was used. Thiskernel has the drivers built-in for the limited peripheral set
found on the development boards made by Simtec Electronics.

The webki osk- ar m gz and the kernel were placed on a TFTP server and the ABLE boot-loader was used to start the
system.

> (tftpboot)vminuz-2.6.26-sinmecl-s3c24xx-eabi initrd=(tftpboot)webki osk-arm gz \
root =/ dev/ ranD consol e=ttySACO

The system started and displayed the web browser as expected. The drawback to the host-based approach has become evident
at this point however. Compiling the web browser on the ARM box took some seventeen minutes, preparing the cpio took
another four minutes, shutting down the NFS system and booting the output took another six minutes.

Fromthesetimingsit can be seen the edit, build and test cycle using this approach isover half an hour which, aswelearnedin
the second article of the series, will have alarge impact on the developer's productivity. We might make some improvement
on that time by not having to rebuild the entire browser every time and by using afaster boot medium than TFTP (the ABLE
boot-loader supports HTTP, for example).

Because the system was targeted at a Simtec Electronics integrated module it is possible to run the system on other base-
boards in the range. To test this the image was started on a DePicture [http://www.simtec.co.uk/productsBBD20EUROU/]
touchscreen tablet. The system started as expected and was able to navigate the web as normal with the touchscreen.

http://www.simtec.co.uk/products/SWDEBIAN/files/debootstrap-article.pdf
http://www.simtec.co.uk/products/SWDEBIAN/files/debootstrap-article.pdf
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webkiosk-arm.sh
http://www.simtec.co.uk/products/SWLINUX/files/mkbusyfs/webkiosk-arm.sh
http://www.simtec.co.uk/products/BBD20EUROU/
http://www.simtec.co.uk/products/BBD20EUROU/

An ARM based web kiosk system

Figure 2. DePicture system showing the NetSurf welcome page.

[http://www.netsurf-browser.org/welcome/ |

Welcome to NetSurf

NetSurf is a small, fast open source web browser. We are always keen to improve
our browser. so get in touch if you run m:nL&w problems. Thanks for choosing
NetSurf!

Google Search

= BBC News * Slashdot = Wikipedia * Drobe

4. Improving the process

The primary issue with the approach illustrated here, isthat of development speed. The hardware system was sel ected for its
ability to meet our project requirements, these are different to those necessary to construct the system.

The hardware selected traded CPU performance for areduction in power consumption. The processor in PCsin general use
at thistime has around ten times the CPU power and five times the memory performance of the ARM SoC.

We could of course simply build on a more powerful ARM host and deploy the output on the target. This approach has
the merit that it is straightforward to implement and the substantial drawback that a compatible host may not be available.
Even if a compatible system is available they must be purchased for each developer which adds cost and may not shorten
the development cycle by an amount large enough to justify the expense.

A commonly-used solution to thisissue isto harness the power of afull PC system to generate output for the target. We have
already used the QEMU emulator to test our output images, it can also emul ate targets other than an x86 PC. Although some
of the performance of the host processor will be lost to the emulation, the resulting system will generally still perform better
than the native ARM hardware. This gives us the desired build performance without the expense of purchasing additional
physical hardware. It also means we do not have to reboot the build system to test the results.

One issue worth mentioning here is that the more powerful the host PC the faster the emulation will be and the shorter the
development cycle. If the host PC is not up to the task this approach might actually result in the opposite of the desired
result and slow development.

The bootstrapping [http://www.simtec.co.uk/products/ SWDEBI AN/files/debootstrap-article.pdf] article outlines how to cre-
ate a disc image suitable for use with the emulator. A Debian Lenny system for the armel architecture should be prepared
and started with QEMU and the system used to generate images.

The only small caveat isthat the chosen target hardware system must be supported by QEMU. Unfortunately it is somewhat
challenging to get new hardware support accepted into the QEMU project. At thistime the Simtec Electronics boards are not
supported in the pre-packaged QEMU, patches and sources necessary to create a QEMU that supports Simtec Electronics
boards are available but must be compiled and installed separately.

http://www.simtec.co.uk/products/SWDEBIAN/files/debootstrap-article.pdf
http://www.simtec.co.uk/products/SWDEBIAN/files/debootstrap-article.pdf

An ARM based web kiosk system

5. What's next?

This fourth article outlines some of the reasons to use hardware more suited to a set of requirements. It demonstrates the
relative ease with which a host based build approach can be used to generate a working system for a small ARM system.
Finally it shows some of the drawbacks of this approach and how they might be addressed.

In the next article we shall examine moreissues surrounding the completion of a project and examine an aternative approch

to building systems.

6. About the authors

Vincent Sanders

Daniel Silverstone

Simtec Electronics [http://
Www.simtec.co.uk]

Vincent isthe senior software engineer at Simtec Electronics and has extensive expe-
rience in the computer industry. He has worked on projects from large fault tolerant
systems through accounting software to right down to programmable logic systems.
Heisan active developer for numerous open source projectsincluding the Linux ker-
nel and is also a Debian developer.

Daniel isasoftware engineer at Simtec Electronics and has experience in architecting
robust systems. He develops software for a large number of open source projects,
contributes to the Linux kernel and is both an Ubuntu and Debian devel oper.

Simtecisafull solutions provider with aproven track record of helping clientswith all
aspectsof aproject, frominitial concept and design through to manufacturing finished
product. With 20 yearsin theindustry, and producing ARM CPU modules since 1992,
Simtec's wide experience in embedded systems and the Linux kernel provide a strong
base on which to build custom hardware and software solutions, from the smallest of
USB devicesto the largest complex Linux systems. Simtec's custom-off-the-shelf de-
sign service, utilising arange of pre-designed modules of variousfunctions, allowsfor
rapid design and prototype turnaround, reducing time-to-market. Simtec also provide
a full software development consultancy with an extensive range of products from
boot loadersto full Linux based operating system environments and arange of devel-
opment boards showcasing Simtec's modular designs.

http://www.simtec.co.uk
http://www.simtec.co.uk
http://www.simtec.co.uk

	An ARM based web kiosk system
	Table of Contents
	1. Introduction
	2. Scaling the design
	3. Converting the example
	4. Improving the process
	5. What's next?
	6. About the authors

