
1

Simple Embedded Linux System

Vincent Sanders
Daniel Silverstone

Copyright © 2009 Simtec Electronics

• Linux is a registered trademark of Linus Torvalds.

• Unix is a registered trademark of The Open Group.

• All other trademarks are acknowledged.

While every precaution has been taken in the preparation of this article, the publisher assumes no responsibility for
errors or omissions, nor for damages resulting from the use of the information contained herein.

Revision History
Revision 1.00 5th March 2009 VRS, DJAS

Initial Release.

Table of Contents
1. Introduction ... 1
2. What is an embedded system? .. 1
3. What do you want to achieve? .. 2
4. Anatomy of a Linux-based system ... 2
5. A simple beginning ... 3
6. Booting a real system .. 4
7. What's next? .. 5
8. About the authors ... 5

This article describes how to construct a simple Linux-based embedded system.

1. Introduction
Constructing an embedded system with Linux is often seen as a complex undertaking. This article is the first in a series which will
show the fundamental aspects of constructing such systems and enable the reader to apply this knowledge to their specific situation.

This article covers the construction of the most basic system possible which will provide a command shell on the console.

This article, and indeed the whole series, assumes a basic understanding of a Linux-based operating system. While discussing
concepts and general approaches these concepts are demonstrated with extensive practical examples. All the practical examples are
based upon a Debian- or Ubuntu-based distribution.

2. What is an embedded system?
The term “Embedded System” has been applied to such a large number of systems that its meaning has become somewhat ill-
defined. The term has been applied to everything from 4 bit micro controller systems to huge industrial control systems.

The context in which we are using the term here is to refer to systems where the user is limited to a specific range of interaction with
a limited number of applications (typically one). Thus from the whole spectrum of applications which a general purpose computer
can run a very narrow selection is made by the creator of the embedded system software.

It should be realized that the limits of interaction with a system may involve hardware as well as software. For example, if a system
is limited to a keypad with only the digits 0 to 9, user interaction will more constrained than if the user had access to a full 102
key keyboard.

Simple Embedded Linux System

2

In addition to the limiting of user interaction, there may also be limits on the system resources available. Such limits are typically
imposed by a systems cost, size or environment. However wherever possible these limits should be arrived at with as much knowl-
edge of the system requirements as possible. Many projects fail unnecessarily because an arbitrary limit has been set which makes a
workable solution unachievable. An example of this would be the selection of a system's main memory size before the application's
memory requirements have been determined.

3. What do you want to achieve?
A project must have a clearly defined goal.

This may be viewed as a statement of the obvious but it bears repeating as for some unfortunately inexplicable reason, embedded
systems seem to suffer from poorly-defined goals.

An “embedded” project, like any other, should have a clear statement of what must be achieved to be declared a success. The project
brief must contain all the requirements and, in addition, a list of “desirable properties”. It is essential that the two should not be
confused; e.g. if the product must fit inside a 100mm by 80mm enclosure that is a requirement. However, a statement that the lowest
cost should be achieved is a desirable item whereas a fixed upper cost would be a requirement.

If information necessary to formulate a requirement is not known then it should be kept as a “desirable item” couched in terms of
that unknown information. It may be possible that once that information is determined, a requirement can be added.

It is, again, self-evident that any project plan must be flexible enough to cope with changes to requirements, but it must be appreciated
that such changes may have a huge impact on the whole project and, indeed, may invalidate central decisions which have already
been made.

General IT project management is outside the scope of this article. Fortunately there exist many good references on this topic.

Requirements which might be added to a project brief based on the assumptions of this article are:

The system software will be based upon a Linux kernel.
The system software will use standard Unix-like tools and layout.

The implications of these statements mean the chosen hardware should have a Linux kernel port available and must have sufficient
resources to run the chosen programs.

Another important consideration is what kind of OS the project warrants. For example, if you have a project requirement of in-field
updates then you may want to use a full OS with package management such as Debian GNU/Linux or Fedora. Such a requirement
would, however, imply a need for a non-flash-based storage medium such as a hard disc for storing the OS, as these kinds of
systems are typically very large (even in minimal installations) and not designed with the constraints of flash-based storage in mind.
However, given that additional wrinkle, using an extant operating system can reduce software development costs significantly.

4. Anatomy of a Linux-based system
Much has been written on how Linux-based systems are put together; however a brief review is in order, to ensure that basic concepts
are understood.

To be strictly correct the term “Linux” refers only to the kernel. Various arguments have been made as to whether the kernel
constitutes an Operating System (OS) in its entirety, or that the term should refer to the whole assemblage of software that makes
up the system. We use the latter interpretation here.

The general steps when any modern computer is turned on or reset is:

• The CPU (or designated boot CPU on multi-core/processor systems) initialises its internal hardware state, loads microcode etc.

• The CPU commences execution of the initial boot code e.g. the BIOS on x86 or the boot-loader on ARM.

• The boot code loads and executes the kernel. However, it is worth noting that x86 systems generally use the BIOS to load an
intermediate loader such as GRUB or syslinux which then fetches and starts the kernel.

• The kernel configures the hardware and executes the init process.

• The init process executes other processes to get all the required software running.

Simple Embedded Linux System

3

The kernel's role in the system is to provide a generic interface to programs and arbitrate access to resources. Each program running
on the system is called a process. Each operates as if it were the only process running. The kernel completely insulates a program
from the implementation details of physical memory layout, peripheral access, networking etc.

The first process executed is special in that it is not expected to exit and is expected to perform some basic housekeeping tasks
to keep a system running. Except in very specific circumstances the init process is provided by a program named /sbin/init
which behaves correctly. The init process typically starts a shell script at boot to execute additional programs.

Some projects have chosen to run their primary application as the init process, while this is possible it is not recommended as a
such a program is exceptionally difficult to debug and control. A programming bug in the application halts the system and provides
no way to debug the issue.

One feature of almost all Unix-like systems is the shell, an interactive command parser. Most common shells have the Bourne
shell syntax.

5. A simple beginning
We shall now consider creating a minimal system. The approach taken here requires no additional hardware beyond the host PC
and the absolute minimum of additional software.

As already mentioned, these examples assume a Debian or Ubuntu host system. To use the QEMU emulator for testing the host
system must be supported by QEMU as a target. An example where this might not be the case is where the target system is x86-64,
which QEMU does not support.

To ease construction of the examples we will use the kernel's initramfs support. An initramfs is a gzip-compressed cpio archive of
a file system which is unpacked into a RAM disc at kernel initialisation. A slight difference to normal system start-up is that while
the first process executed must still be called init, it must be in the root of the file system. We will use the /init script to create
some symbolic links and device nodes before executing the more-typical /sbin/init program.

This example system will use a program called busybox, which provides a large number of utilities in a single executable including
a shell and an init process. Busybox is used extensively to build embedded systems of many types.

The busybox-static package is required to obtain pre-built copy of the busybox binary and the qemu package is required to
test the constructed images. These may be obtained by executing:

$ sudo apt-get install busybox-static qemu

As mentioned, our initramfs-based approach requires a small /init script. This configures some basic device nodes and directories,
mounts the special /sys and /proc file systems and starts the processing of hotplug events using mdev.

#!/bin/sh

Create all the busybox symbolic links
/bin/busybox --install -s

Create base directories
[-d /dev] || mkdir -m 0755 /dev
[-d /root] || mkdir --mode=0700 /root
[-d /sys] || mkdir /sys
[-d /proc] || mkdir /proc
[-d /tmp] || mkdir /tmp
mkdir -p /var/lock

Mount essential filesystems
mount -t sysfs none /sys -onodev,noexec,nosuid
mount -t proc none /proc -onodev,noexec,nosuid

Create essential filesystem nodes
mknod /dev/zero c 1 5

Simple Embedded Linux System

4

mknod /dev/null c 1 3

mknod /dev/tty c 5 0
mknod /dev/console c 5 1
mknod /dev/ptmx c 5 2

mknod /dev/tty0 c 4 0
mknod /dev/tty1 c 4 1

echo "/sbin/mdev" > /proc/sys/kernel/hotplug

echo "Creating devices"
/sbin/mdev -s

exec /sbin/init

To construct the cpio archive, the following commands should be executed in a shell. Note however that INITSCRIPT should be
replaced with the location of the above script.

$ mkdir simple
$ cd simple
$ mkdir -p bin sbin usr/bin usr/sbin
$ cp /bin/busybox bin/busybox
$ ln -s busybox bin/sh
$ cp INITSCRIPT init
$ chmod a+x init
$ find . | cpio --quiet -o -H newc | gzip >../simple.gz
$ cd ..

To test the constructed image use a command like:

$ qemu -kernel /boot/vmlinuz-2.6.26-1-686 -initrd simple.gz \
 -append "root=/dev/ram" /dev/zero

This should present a QEMU window where the OS you just constructed boots and displays the message “Please press Enter to
activate this console”. Press enter and you should be presented with an interactive shell from which you can experiment with the
commands busybox provides. This environment is executing entirely from a RAM disc and is completely volatile. As such, any
changes you make will not persist when the emulator is stopped.

6. Booting a real system
Starting the image under emulation proves the image ought to work on a real system, but there is no substitute for testing on real
hardware. The syslinux package allows us to construct bootable systems for standard PCs on DOS formatted storage.

A suitable medium should be chosen to boot from, e.g. a DOS formatted floppy disc or a DOS-formatted USB stick. The DOS
partition of the USB stick must be marked bootable. Some USB sticks might need repartitioning and reformatting with the Linux
tools in order to work correctly.

The syslinux program should be run on the device /dev/fd0 for a floppy disk or something similar to /dev/sdx1 for a USB
stick. Care must be taken as selecting the wrong device name might overwrite your host systems hard drive.

The target device should then be mounted and the kernel and the simple.gz file copied on.

The syslinux loader can be configured using a file called syslinux.cfg which would look something like:

default simple
timeout 100

Simple Embedded Linux System

5

prompt 1

label simple
 kernel vmlinuz
 append initrd=simple root=/dev/ram

The complete command sequence to perform these actions, substituting file locations as appropriate, is:

$ sudo syslinux -s /dev/sdd1
$ sudo mount -t vfat -o shortname=mixed /dev/sdd1 /mnt/
$ cd /mnt
$ sudo cp /boot/vmlinuz-2.6.26-1-686 VMLINUZ
$ sudo cp simple.gz SIMPLE
$ sudo cp syslinux.cfg SYSLINUX.CFG
$ cd /mnt
$ sudo umount /mnt

The device may now be removed and booted on an appropriate PC. The PC should boot the image and present a prompt exactly
the same way the emulator did.

7. What's next?
This first step, while simple, provides a complete Operating System and demonstrates that constructing an embedded system can
be a straightforward process.

The next step is to expand this simple example to encompass a specific application which will be covered in the next article.

8. About the authors
Vincent Sanders Vincent is the senior software engineer at Simtec Electronics and has extensive experience in

the computer industry. He has worked on projects from large fault tolerant systems through
accounting software to right down to programmable logic systems. He is an active developer
for numerous open source projects including the Linux kernel and is also a Debian developer.

Daniel Silverstone Daniel is a software engineer at Simtec Electronics and has experience in architecting robust
systems. He develops software for a large number of Open source projects, contributes to the
Linux kernel and is both an Ubuntu and Debian developer.

Simtec Electronics [http://
www.simtec.co.uk]

Simtec is a full solutions provider with a proven track record of helping clients with all as-
pects of a project, from initial concept and design through to manufacturing finished product.
With 20 years in the industry, and producing ARM CPU modules since 1992, Simtec's wide
experience in embedded systems and the Linux kernel provide a strong base on which to build
custom hardware and software solutions, from the smallest of USB devices to the largest
complex Linux systems. Simtec's custom-off-the-shelf design service, utilising a range of
pre-designed modules of various functions, allows for rapid design and prototype turnaround,
reducing time-to-market. Simtec also provide a full software development consultancy with
an extensive range of products from boot loaders to full Linux based operating system envi-
ronments and a range of development boards showcasing Simtec's modular designs.

http://www.simtec.co.uk
http://www.simtec.co.uk
http://www.simtec.co.uk

	Simple Embedded Linux System
	Table of Contents
	1. Introduction
	2. What is an embedded system?
	3. What do you want to achieve?
	4. Anatomy of a Linux-based system
	5. A simple beginning
	6. Booting a real system
	7. What's next?
	8. About the authors

