
ABLE User Guide

Simtec Electronics

V R Sanders
B J Dooks

D J Silverstone

ABLE User Guide
Simtec Electronics
by V R Sanders, B J Dooks, and D J Silverstone

Published 2008
Copyright © 2003, 2004, 2005, 2006, 2008 Simtec Electronics

• Linux® is a registered trademark of Linus Torvalds.

• UNIX® is a registered trademark of The Open Group.

• I2C® is a registered trademark of Philips Semiconductors Corporation

• All other trademarks are acknowledged.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

iii

Table of Contents
Preface ... xiii
I. Usage .. 1

1. Overview ... 3
2. Getting Started .. 5

2.1. Using hyperterm as a serial console ... 6
2.2. Using minicom as a serial console ... 7

3. Command Line Interface .. 9
3.1. Command line editing ... 9
3.2. Simple commands ... 9
3.3. Quoting ... 9
3.4. Filesystem navigation .. 9
3.5. Getting help ... 11
3.6. Setting Options ... 12

4. The ABLE shell .. 13
4.1. Conditional execution .. 13
4.2. Shell variables .. 14

4.2.1. Simple variables ... 14
4.2.2. Non volatile variables .. 14
4.2.3. Positional variables ... 14
4.2.4. Special variables ... 15
4.2.5. Accessing variables ... 15
4.2.6. Variables with special meanings .. 16

4.3. Functions ... 16
4.4. Command substitution .. 16
4.5. Shell script ... 17

5. ABLE Console .. 19
5.1. Console drivers ... 19
5.2. Setting parameters on serial drivers .. 20
5.3. Configuring the console system ... 20
5.4. Setting the logging level ... 22
5.5. Practical use of the console system .. 22

5.5.1. Basic serial debug console ... 22
5.5.2. No console at all .. 23
5.5.3. Displaying a logo and boot abort ... 23

6. Starting an Operating System .. 25
6.1. Data sources ... 25
6.2. Alias sources .. 26
6.3. Network sources ... 26
6.4. XModem source ... 27
6.5. Navigating a filesystem .. 27
6.6. How ABLE identifies files. ... 27

6.6.1. ABLE shell script ... 28
6.6.2. ABLE executable .. 28
6.6.3. ARM Linux zImage .. 28
6.6.4. ELF and AOUT files ... 28
6.6.5. UNIX Compress files .. 28
6.6.6. Gzip files .. 28
6.6.7. Images, text and data files .. 28
6.6.8. Motorola S-Record .. 28

6.7. Starting an Operating System .. 30
6.7.1. The "setargs, load and boot" method .. 30
6.7.2. The "command line" method .. 31

6.8. Starting an Operating System Automatically .. 32
7. Networking ... 35

7.1. Finding a network interface .. 35
7.2. Configuring a network interface ... 35
7.3. Using the network to obtain files ... 36

8. Upgrading .. 37

ABLE User Guide

iv

8.1. Upgrading a NAND based systems .. 37
8.1.1. Obtaining Upgrades .. 37
8.1.2. Applying the update .. 38

8.2. Upgrading NOR based systems ... 38
8.2.1. Obtaining Upgrades .. 38
8.2.2. Loading the Upgrade ... 39
8.2.3. Running the upgrade ... 39

II. Built-in Command Reference .. 41
9. Core Commands .. 43

autoboot .. 44
console .. 46
date ... 48
dev ... 49
help .. 50
history ... 52
hwinfo ... 53
meminfo .. 54
modules ... 55
mutexes ... 57
passwd .. 58
pmu .. 59
reset .. 60
sbcd .. 61
setdate ... 62
setopt .. 63
settime .. 64
shadow .. 65
showhz .. 66
sysmsg .. 67
sysspeed .. 69
tasks ... 70
uname ... 71
version .. 72

10. Shell Commands .. 73
echo .. 74
exit ... 75
read .. 76
set .. 78
sh ... 79
sleep ... 80
test ... 81

11. Network operations .. 85
ifconfig .. 86
dhclient ... 88
host ... 89
mii .. 90
nc ... 91

12. File Navigation .. 93
cd ... 94
dumpfile .. 95
pwd .. 97

13. File manipulation commands .. 99
cat ... 100
cp ... 101
dumpfile .. 102
file .. 104
more .. 105
sum ... 106

14. Non-volatile settings ... 107
nvclear ... 108

ABLE User Guide

v

nvsave ... 109
nvset ... 110
nvshow .. 112
nvunset .. 113

15. OS manipulation commands ... 115
boot ... 116
load ... 117
showargs .. 118
setargs ... 119

16. Debugging commands ... 121
dump ... 122
memset .. 123
nand .. 124
peek .. 125
poke .. 126

III. External Command Reference .. 127
17. Framebuffer commands ... 129

display ... 130
fbset .. 132

18. I2C commands ... 133
i2c-rd .. 134
i2c-wr .. 135
i2c-scan ... 136

19. Miscellaneous commands .. 137
ablefis .. 138
batty .. 144
detect-large-nand ... 146

IV. Creating external commands .. 147
20. Tools and libraries .. 149

20.1. Obtaining a suitable toolchain .. 149
20.2. Obtaining development libraries and headers .. 149

21. ABLE C Library .. 151
22. A new ABLE command .. 153

22.1. Execution environment ... 153
22.2. How the libraries fit together ... 153
22.3. A hello world command ... 153
22.4. A simple command built with two objects .. 154
22.5. A simple command using floating point maths .. 155

A. Non-Volatile Variables Reference .. 157
boot.auto .. 158
boot.cmd .. 159
boot.timeout .. 160
boot.fs ... 161
console.write ... 162
console.read .. 163
console.level ... 164
console.password ... 165
fb.enable .. 166
fb.output .. 167
fb.x ... 168
fb.y ... 169
fb.refresh .. 170
ide.multi-limit ... 171
shell.hist ... 172
sys.autoshadow .. 173
sys.speed .. 174
usb.enable .. 175
usb.hubdepth ... 176

B. Changelog .. 177
Index ... 179

vi

vii

List of Figures
2.1. Hyperterm settings window .. 6
2.2. Hyperterm displaying ABLE output ... 6
2.3. Minicom settings window .. 7
2.4. Minicom displaying ABLE output ... 7
6.1. Outline of Motorola S-Record ... 29
6.2. Initial boot operations .. 33
8.1. IM2440D20 firmware page ... 37
8.2. EB2410ITX firmware page ... 38
9.1. Autoboot command flowchart ... 45

viii

ix

List of Tables
4.1. Non-volatile data types .. 14
4.2. Special variables ... 15
4.3. Variables with special meanings .. 16
5.1. Available console drivers ... 19
6.1. S-Record loader error codes .. 29
6. Commands in alphabetical order .. 41
9.1. Defined console log levels .. 46
10.1. Escaped echo characters ... 74
10.2. Possible test expressions ... 81
10. Commands in alphabetical order ... 127
21.1. ISO headers provided in ABLE C library ... 151
21.2. Additional headers available in ABLE libc ... 151
A.1. Alphabetical list of non-volatile variables .. 157

x

xi

List of Examples
2.1. Display after starting ABLE on EB2410ITX .. 5
3.1. Navigating a filesystem .. 10
3.2. Getting help on the uname command .. 11
3.3. Using the nvshow command to list the default variables ... 12
4.1. Using the test command and conditional operators .. 13
4.2. Using curly braces to disambiguate variables ... 15
4.3. Accessing positional parameters ... 15
4.4. Defining and using functions. .. 16
4.5. Using substitutions. ... 17
4.6. Example shell script .. 17
5.1. Using the console command to show available drivers ... 19
5.2. Setting serial console driver parameters .. 20
5.3. Showing the consoles of an unconfigured system .. 21
5.4. Adding console drivers to a running system ... 21
5.5. Setup of basic serial console ... 22
5.6. Using the null drivers safely ... 23
5.7. A method to display logo and boot abort ... 24
6.1. Using the dumpfile(1) command to list available sources. ... 25
6.2. Using the dumpfile(1) command to list cooked sources .. 26
6.3. Using the tftpboot source ... 26
6.4. Using the XModem source ... 27
6.5. An example S-Record .. 30
6.6. Using the "setargs, load and boot" method to start a Linux kernel .. 31
6.7. Using the "command line" method to start a Linux kernel .. 32
6.8. Displaying a logo during the automatic boot process ... 32
7.1. Executing a program using the tftpboot pseudo filesystem .. 36
8.1. The romwrite command requiring the shadow command .. 39
8.2. The romwrite command producing warnings .. 39
8.3. The romwrite command completing successfully .. 40
9.1. Using the console command ... 46
9.2. Using the date command .. 48
9.3. Using the help command .. 50
9.4. Using the history command .. 52
9.5. Using the hwinfo command .. 53
9.6. Using the meminfo command .. 54
9.7. Using the modules command .. 55
9.8. Using the passwd command .. 58
9.9. Using the setdate command to set the real time clock .. 62
9.10. Using the setopt command to alter serial port options. .. 63
9.11. Using the settime command to set the real time clock .. 64
9.12. Using the showhz command .. 66
9.13. Displaying the system messages after a default boot .. 67
9.14. Using the syspeed command on a EB2410ITX ... 69
9.15. Using the tasks command ... 70
9.16. Using the uname command on the EB2410ITX .. 71
9.17. Using the version command .. 72
10.1. Using the echo command .. 74
10.2. Using the read command .. 76
10.3. Subshell variable scope .. 79
10.4. Using the sleep command to delay execution ... 80
10.5. Performing assorted tests .. 82
11.1. Using the ifconfig command to select default interface ... 86
11.2. Using the ifconfig command to configure a fixed address ... 87
11.3. Using the dhclient command ... 88
11.4. Using the host command to resolve an address. .. 89
11.5. Using the mii command to show all the registers in a phy ... 90
12.1. Using the cd and ls commands to navigate a filesystem .. 94
12.2. Using the ls command .. 95

ABLE User Guide

xii

12.3. Using the pwd command and PWD variable to show the present working directory .. 97
13.1. Using cat command to display files contents ... 100
13.2. Using the dumpfile command .. 102
13.3. Using the file command to determine filetypes .. 104
13.4. Checksumming a file with the sum command ... 106
14.1. Using the nvset command and shell method to alter a non-volatile variables ... 110
14.2. Using the nvset command ... 111
14.3. Using the nvshow command .. 112
15.1. Using the boot command .. 116
15.2. Using the showargs command .. 118
15.3. Using the setargs command ... 119
16.1. Using the dump command to examine memory ... 122
16.2. Using the nand command to display a range of NAND blocks ... 124
17.1. Using the display command ... 131
17.2. Using the fbset command .. 132
18.1. Using the i2c-rd command .. 134
18.2. Using the i2c-wr command .. 135
18.3. Using the i2c-scan command ... 136
19.1. Starting ABLE FIS .. 138
19.2. ABLE FIS creating a default FIS table .. 139
19.3. Removing a partition from a FIS table ... 140
19.4. Adding and Editing a FIS table partition .. 141
19.5. Adding partition to FIS table ... 141
19.6. Shortening a FIS table .. 142
19.7. Writing current FIS partition table .. 142
19.8. Editing the name of a FIS partition ... 143
19.9. Changing the length of a partition. .. 143
19.10. Starting batty from the command line .. 144
19.11. Using detect-large-nand from the command line .. 146
22.1. Hello World command ... 153
22.2. Example using a makefile ... 154
22.3. Command using math functions ... 155

xiii

Preface
About this document. This document describes the Simtec Electronics Advanced Boot Load Environment (ABLE) which
provides a flexible environment for both experimentation and integrator solutions.

Intended Audience. This document is aimed at anyone using the ABLE bootloader. The first part is more useful to the
beginner but the reference parts allow the book to remain useful to the more experienced user.

Chapter Summary.

Chapter 1, Overview Gives an outline of what functions ABLE does and does not provide and a brief dis-
cussion of possible features.

Chapter 2, Getting Started Gives an introduction to the facilities of ABLE and methods for interacting with the
bootloader.

Chapter 3, Command Line Inter-
face

Gives a comprehensive guide to using the in built command line interface.

Chapter 4, The ABLE shell Provides a guide to the use of the ABLE shell.

Chapter 5, ABLE Console Shows how ABLE communicates with the user and how that is controlled.

Chapter 6, Starting an Operating
System

Shows how Operating systems may be started. Including how OS are located and
identified both for manual and automated loading.

Chapter 7, Networking Gives details on how to configure network interfaces from ABLE

Chapter 8, Upgrading Gives details on how to upgrade the bootloader.

Part II, “Built-in Command Refer-
ence”

Is a complete reference to all the built in commands within ABLE.

Appendix A, Non-Volatile Vari-
ables Reference

Is a complete reference to all the non volatile variables available within ABLE.

Acknowledgements. Several people contributed to the creation of this book in various ways. I would especially like to
thank R. Parry and M Gillard for proofreading.

Feedback. Any suggestions, comments or corrections concerning this document are welcomed, please contact Simtec
Electronics giving:

The document title
The document revision
A clear explanation of your comments and how they apply

xiv

Part I. Usage

3

Chapter 1. Overview
The Simtec Electronics Advanced Boot Load Environment (ABLE) is a portable modular boot loader for use in applications
where an Operating System (OS) must be retrieved and started. ABLE provides extended functionality providing modules
for a command line, video consoles, serial consoles, network booting and numerous other facilities.

ABLE is a powerful tool and provides a flexible environment useful for both the development and deployment of systems.
ABLE is a boot loader, not an Operating System, this distinction can sometimes lead to misunderstandings about the capa-
bilities provided by ABLE. A boot loader in this context is a self contained program which retrieves and starts execution
of an Operating System it does not execute user programs itself (all the CLI commands are built in) and does not provide
services to an Operating System once started (PC BIOS perform this role).

The modular nature of ABLE allows the use of the same building blocks for every supported platform. The integration and
omission of various modules allow for specific driver sets depending on the peripherals of a platform. The flexibility of
this approach allows for a common familiar environment across all supported platforms while still supporting a complete
feature set.

This user guide covers the operation of ABLE from its command line interface (CLI). For details on the programming
interface and more advanced topics please see the ABLE Reference manual or contact Simtec Electronics support directly.

ABLE is typically provided in any board directly manufactured by Simtec Electronics. Customer applications which are not
manufactured by Simtec Electronics may still use ABLE once a suitable binary distribution licence is obtained.

4

5

Chapter 2. Getting Started
When a platform is initially powered or a hard reset performed, the Initial Program Loader (IPL) is started. The IPL is a very
small program which retrieves and starts the full boot loader. If the IPL is unsuccessful it will attempt an XModem transfer
using the primary serial port. The IPL is not a boot loader, the image it loads can only be retrived from the flash it was loaded
from, it takes no user input, produces no output and configures no peripherals.

The IPL retrives ABLE and passwes execution to it. ABLE is constructed using a small core and numerous modules. Each
module represents a specific set of functionality and may provide additional functionality to other modules. Each component
module is loaded in turn according to a priority. The modules command may be used to examine the currently loaded modules
and their priorities.

The last module loaded is the ABLE shell which will present the user with a command line interface.

ABLE is interacted with using a textural Command Line Interface. This interface is most commonly presented on a serial
port but may be on a video console or via the network.

ABLE has a flexible console system for its input and output which can be configured to meet most requirements. The console
system is controlled with console command and the console.read and console.write parameters. Details on using
the console system can be found in Chapter 5, ABLE Console

The default console operation is to use all suitable input and output devices available.

On the EB2410ITX both the first serial port and the video display will be used for output and the serial port and USB
keyboard for input.

Example 2.1. Display after starting ABLE on EB2410ITX

This example shows the typical default output shown when ABLE is started.

selected all-wr for console write
selected all-rd for console read
DRAM: 128 Mb (134217728 bytes)
BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
ABLE 2.20 Copyright 2001-2005,2006 Simtec Electronics
hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
hdc: FUJITSU MHF2043AT: ATA PIO mode 4
hdc:Diagnosing disc drive: ok
(hdc) 4GB
(hd0) on ((hdc1):ext2)
(hdb) Drive Empty
DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
TMP101: not detected
sys.autoshadow unset, automatically shadowing
>

Unless the boot parameters are altered from their default settings the automatic boot process will commence. To manually
start an operating system the command line must be used.

Using hyperterm as a serial console

6

2.1. Using hyperterm as a serial console

To access the serial console from windows the Hyperterm program can be used. Identify which serial port the platform is
connected to and ensure a note is made of the correct COM port, e.g. COM1 or COM2.

Figure 2.1. Hyperterm settings window

Start HyperTerm and create a new connection. When prompted for which modem to use, instead choose the appropriate
COM port, as noted earlier. Then the appropriate settings for your platform (please refer to platform specific documentation)
typically these settings are 115200 bits per second, 8 data bits, no parity, 1 stop bit and no flow control.

Figure 2.2. Hyperterm displaying ABLE output

Once the connection is established the output from ABLE should be seen in the Hyperterm window

Using minicom as a serial console

7

2.2. Using minicom as a serial console

To access the serial console from Linux® the minicom program can be used. Identify which serial port the EB675001DIP is
connected to and ensure a note is made of the correct device node, e.g. something like /dev/ttyS0 or /dev/ttyUSB0.

Start Minicom and ensure the correct configuration is selected. The default keyboard action to access the configuration
screen in Ctrl-A followed by o. The “Serial port setup” option should be selected.

The serial device should be set (setting A) to that noted earlier. The serial parmeters should be set apropriately (option E),
the parameters most common for Simtec Electronics boards are 115200 baud, 8 data bits, no parity and 1 stop bit. Hardware
and software flow control should also be disabled.

Figure 2.3. Minicom settings window

Minicom may be started with the -s switch and a configuration name. This allows a configuration to be created which may
be used in future invocations removing the need to reconfigure Minicom each time it is started.

Figure 2.4. Minicom displaying ABLE output

Minicom started with ttyUSB0 causing a named configuration to be used.

8

9

Chapter 3. Command Line Interface
The ABLE command line interface (CLI) provides the primary method for interacting with ABLE. The command line is
the interactive interface to the ABLE shell.

The CLI is a flexible environment and commands can be placed in a script file for automation purposes. All the current
commands are documented in Part II, “Built-in Command Reference”.

3.1. Command line editing
The default prompt is “>”, this can be altered by setting the value of the PS1 shell variable. Commands can be entered at
the prompt and executed by pressing return.

If an error is made while typing a command the left and right arrow keys can be used to position the cursor and insert or
delete characters.

Once a command has been executed it may be recalled by using the up arrow, indeed several commands are stored in the
command history to a depth determined by the shell.hist parameter. By using the up and down arrow keys the desired line
in the history may be selected. The command may then optionally be edited and then executed by pressing return.

Depending on the terminal in use some standard control characters can be used, for example Control U to clear a line.

3.2. Simple commands
The shell processes commands as a series of tokens separated by unquoted space, tab, ||, && and ; characters. The first token
specifies the command to be executed and is passed as the first argument, all the remaining tokens are passed as parameters
to the command.

Each command exits with a status, this status is represented by a number between 0 and 255. A command which exits with
a status of 0 has succeeded any other value is taken to indicate a failure.

The shell itself will return the status of the last command it executed or the value specified if using the exit command.

3.3. Quoting
Some characters and words have special meanings to the shell. The quoting process is used to remove these special properties.

There are three ways to quote special values

• The escape character (\)

• Single quotation marks (')

• Double quotation marks (")

The escape character, a backslash \, causes the shell to ignore the special properties of the following character.

Single quotes around characters stop any special meanings. Strings escaped with single quotes may not contain a single quote
because the escape character has no effect within single quotes.

Double quotes preserve all characters within them except $, ' and \. The escape character only works for a limited number
of characters within double quotes, these are $, ', " and \.

3.4. Filesystem navigation
ABLE has the ability to fully navigate detected filesystems. The Chapter 12, File Navigation commands may be used to
move around and list the entries within any filesystem which supports directory enumeration (currently only the tftpboot

Filesystem navigation

10

pseudo filesystem does not). It should be noted that only devices with a valid filesystem recognised and supported by ABLE
can be navigated in this way.

ABLE presents all available filesystems and devices in a hierarchical structure. The root of this filesystem is a virtual rep-
resentation of all the available devices. The devices are either direct representations of devices or aliases which show the
detected filesystems on devices.

At initial boot time the Present Working Directory (PWD) is set to / which represents the root of the filesystems. The PWD is
changed with the cd command and displayed with the pwd command. The dumpfile(1) command without any parameters
lists the PWD. With a parameter it lists the specified directory. The currently available aliases can be show by using dump-
file(1) on the root directory. The all switch (-a) will show all the available filesystems too.

Example 3.1. Navigating a filesystem

>pwd
/
>ls
(hd0) -> (hda1):ext2
(flash3) -> (nand0p4):jffs2
(flash2) -> (nand0p3):jffs2
(flash1) -> (nand0p2):jffs2
(flash0) -> nand0p1
(fb0) -> sm501fb
(s3c2410_serial2) -> char6
(s3c2410_serial1) -> char5
(s3c2410_serial0) -> char4
(u16550_serial3) -> char3
(u16550_serial2) -> char2
(u16550_serial1) -> char1
(u16550_serial0) -> char0
(sbcd0) -> 24cxx1p1
(nvram0) -> 24cxx0p2
(uid0) -> 24cxx0p1
>cd (hd0)
>ls
var
etc
usr
bin
boot
dev
home
lib
proc
root
sbin
tmp
sys
>cd boot
>ls -l
-rw-r--r-- 1 0 0 176 2008-08-11 13:07 able.sh
-rw-r--r-- 1 0 0 804326 2008-08-12 08:35 System.map-2.6.26-simtec1-s3c24xx-oabi
-rwxr-xr-x 1 0 0 1943012 2008-08-12 08:35 vmlinuz-2.6.26-simtec1-s3c24xx-oabi
-rw-r--r-- 1 0 0 56694 2008-08-12 08:35 config-2.6.26-simtec1-s3c24xx-oabi
>

Getting help

11

3.5. Getting help

The ABLE command line has a useful help system available, the help command gives a list of all known commands, some
commands have a --help parameter which is another way to obtain the help text.

Example 3.2. Getting help on the uname command

>help
Internal commands are:
sh autoboot sbcd bast-hdlcd pic-wr pic-rd
bast-at2 bast-at dmcfg-rd dmcfg-wr pmu shadow
mii ifconfig [test console display
file hwinfo wrout version nvclear nvunset
nvsave nvshow nvset uname sum tasks
sleep showhz sysmsg setopt showargs setargs
reset memset meminfo peek poke modules
ls lsfs help echo dumpfile dump
cat cp cd pwd boot load
history sysspeed settime setdate devls date
Use:
 help <command> to get brief explanation
 <command> --help for command usage (if available)
>help uname
Help on uname:
Usage: uname [OPTION]...
Print system information. No OPTION is the same as -s.

 -a, --all all information in the order:
 -s, --kernel-name kernel name
 -n, --nodename network node hostname
 -r, --kernel-release kernel release
 -v, --kernel-version kernel version
 -m, --machine machine hardware name
 -o, --operating-system operating system
 --help display this help and exit
 --version display version and exit

Please report bugs to <support@simtec.co.uk>
>uname --help
Usage: uname [OPTION]...
Print system information. No OPTION is the same as -s.

 -a, --all all information in the order:
 -s, --kernel-name kernel name
 -n, --nodename network node hostname
 -r, --kernel-release kernel release
 -v, --kernel-version kernel version
 -m, --machine machine hardware name
 -o, --operating-system operating system
 --help display this help and exit
 --version display version and exit

Please report bugs to <support@simtec.co.uk>
>uname -a
ABLE unknown 2.20 #1 Tue Feb 14 12:06:59 GMT 2006 s3c2410x ABLE
>

Setting Options

12

3.6. Setting Options
ABLE has the ability to store settings which remain after reset or power cycle and are hence referred to as non-volatile. This
feature is available on all systems, however the amount of storage may vary which will limit the maximum lengths of some
parameters such as the default boot command.

The settings are presented as non-volatile variables which can be simply assigned. However these settings will not be made
permanent until a nvsave command is issued.

The variables are numbers, strings or boolean values. The nvshow command can be used without arguments in order to list
the current values of all variables.

Example 3.3. Using the nvshow command to list the default variables

>nvshow
shell.hist (is unset)
boot.fs (is unset)
boot.auto = off
boot.cmd (is unset)
boot.timeout (is unset)
ide.multi-limit (is unset)
usb.hubdepth (is unset)
usb.enable (is unset)
console.level = 9
console.write (is unset)
console.read (is unset)
fb.enable (is unset)
fb.output (is unset)
fb.refresh (is unset)
fb.y (is unset)
fb.x (is unset)
sys.autoshadow (is unset)
sys.speed (is unset)
>

Section 4.2.2, “Non volatile variables” fully explains the use of these variables and the alternative commands for manipulating
them. Appendix A, Non-Volatile Variables Reference is a list of variables, their meanings and default values.

Values altered by assignment or the nvset command are not permanent until the nvsave command has been issued. The
nvsave command commits the current changes to the non volatile storage, without this the changes will be lost upon a system
reset.

The nvclear command can be used to restore the values back to the defaults. The nvsave should not be used to attempt to
save these values, this would result in the current settings state being saved not the default values.

13

Chapter 4. The ABLE shell
The ABLE shell is a very basic UNIX® bourne shell and should be familiar to anyone experienced with that environment.

The shell executes a series of commands one after another provided from either the command line (see Chapter 3, Command
Line Interface) or from a file (see Section 4.5, “Shell script”.

Each command completes with an exit code which is a simple integer number. Command execution can be made conditional
on the exit code values of previous commands. The test(1) command may be used to perform a variety of logical tests which
allows for script execution control.

Commands may be grouped together using curly brackets ({}) the commands within these groups must be separated by
conditionals and the list must be terminated by a semicolon. One notable difference to standard bourne shell is that command
groups may not use newlines as separators.

A command group may be used as a function which allows for simple procedural programming.

variables may be set to store information and control program execution. In addition these user variables access is available
to the non volatile settings of ABLE.

4.1. Conditional execution
Multiple commands can be placed on a single line each command separated with a conditional operator which controls
execution of subsequent commands

Commands may be separated with one of three conditional operators:

• The first ; is not really a conditional, each command will be executed despite the exit code of the previous command.

• The second && will only execute the next command if the previous one exited with a non zero exit code.

• The third || will only execute the second command if the first command exits with a zero exit code.

With these constructs simple conditional decision processes can be built.

The test(1) command can be used to test logical expressions and combined with the conditional operators make decisions
based upon a variety of tests.

Example 4.1. Using the test command and conditional operators

This example shows how to use the test(1) command to perform some simple textural and numeric comparisons. The full
range of comparisons available can be found in Table 10.2, “Possible test expressions”

>[1 -lt 2] && echo "1 < 2"
1 < 2
>[2 -lt 1] && echo "2 < 1"
>[1 -gt 2] && echo "1 > 2"
>[2 -gt 1] && echo "2 > 1"
2 > 1
>["text" = "text"] && echo "true"
true
>["text" != "text"] || echo "true"
true
>foo="bar" ; [-z ${foo}] && echo "true" ||echo "false"
false
>foo="" ; [-z ${foo}] && echo "true" ||echo "false"
true
>

Shell variables

14

4.2. Shell variables

4.2.1. Simple variables

The ABLE shell supports simple variables, these variables are in the form:

name= [value]

where the name must start with a letter of the alphabet (upper or lower case) or an underscore (_) and continue with letters
of the alphabet, numbers or an underscore (_). The value may contain any arbitrary numeric or textural value and when
omitted is a null (empty) string. The value may need to be quoted in order to get a correct assignment.

4.2.2. Non volatile variables

The non-volatile variables are also accessible from within the shell. The variable form is identical to that of simple variables
with one exception, the body of the variable name will contain a full stop (.).

Any changes to the non-volatile variables will not be made permanent until a nvsave command is issued.

A non-volatile variable my be “unset”, an unset parameter will use the system default value. A variable may be unset by
assigning to an empty value or using the nvunset command.

The nvclear command can be used to restore the values back to the defaults. The nvsave should not be used to attempt to
save these values, this would result in the current settings state being saved not the default values.

The value is interpreted differently depending on the settings data type, as with simple variables the value may need to
be quoted to get a correct assignment.

Table 4.1. Non-volatile data types

Variable type Values

Boolean “on” and “off” (“true” or “false” and “0” or “1” may also be used).

Numeric Any numeric value using only the digits between 0 and 9.

String Any alphanumeric string.

In addition to simple assignment non-volatile variables may be changed with the nvset command. The syntax of the command
is

nvset {variable} {value}

Where the variable is one of those shown in Appendix A, Non-Volatile Variables Reference and the value is correct for
the variables type.

4.2.3. Positional variables

The positional parameters are similar to the simple variables except the variable name is a positive integer number. Each
parameter is set from the arguments to the shell or script when it was started.

The single digit 0 has special meaning and is set to the name of the shell or script.

Positional parameters cannot be assigned with the normal assignment operator and are read only.

When the tenth or later positional parameters are referenced they must be disambiguated using curly braces this is shown
fully in Example 4.3, “Accessing positional parameters”

Special variables

15

4.2.4. Special variables

In addition to simple variables there are a small number of “special” variables which do not match the syntax for simple
variable names. These typically access specific information within the shell and are read only.

Table 4.2. Special variables

Variable name Value

? Exit status of last command

- Shell parameters

* All the positional parameters separated by the first character of the IFS variable.

The number of positional parameters.

4.2.5. Accessing variables

Variables are accessed within the shell by using the dollar symbol followed by the variable name $name. The variable name
my also be surrounded by curly braces ${name}.

The curly brace form is less ambiguous because if the braces are omitted the shell may not be able to distinguish between a
variable name and the text surrounding it. The curly brace form is unambiguous as the variable name is clearly delimited.

Example 4.2. Using curly braces to disambiguate variables

This example shows a variable myvariable being set and then displayed using the two forms showing the ambiguity
problem.

>myvariable=hello
>echo foo $myvariable bar
foo hello bar
>echo foo$myvariablebar
foo
>echo foo${myvariable}bar
foohellobar
>

Special care must be taken of positional parameters, the simple version with no braces is limited to the nine single digits 1-9
to access the the later positional parameters curly braces must be used.

Example 4.3. Accessing positional parameters

This example shows accessing the first positional parameter, then the first positional parameter when the tenth was meant
and finally accessing the tenth parameter correctly.

>echo $1
one
>echo $10
one0
>echo ${10}
ten
>

Variables with special meanings

16

4.2.6. Variables with special meanings

There are a small number of shell variables which have special meaning to the shell environment itself. These variables
generally affect some aspect of the shell environment. Several of these variables have defaults which are assigned by the
shell upon initialisation.

Table 4.3. Variables with special meanings

Variable Meaning

PS1 This variable contains the text of the prompt to use, which allows users to alter their prompt or
scripts to use the same prompt as the shell. This value is set to > by default.

PS4 This variable is the forth level prompt, it is used when the -x switch is in operation to preface output
lines. This value is set to + by default.

PWD This variable is the present working directory within the filesystem. Consult Section 3.4, “Filesys-
tem navigation” for more details. This value is set to / by default.

OLDPWD The previous working directory. Consult Section 3.4, “Filesystem navigation” for more details.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with the read command. This value is set to “space tab newline” by default.

PATH The search path for commands. A series of directories to search for external commands. The di-
rectores are colon separated and may include the PWD which is represented by a single dot.

ABLE_VERSION The version of ABLE currently running. The major and minor version numbers are available seper-
ately as ABLE_VERSION0 and ABLE_VERSION1 respectively.

4.3. Functions
A function is simply a named command group. It is created by the use of the function keyword followed by the function
name a pair of brackets and command group.

A function gets its own positional parameters derived from the options passed to it when called. The positional parameters
from the parent calling level are not available and must be explicitly passed to the function if required.

Function calls may be nested to any depth but must not be recursive. Functions may be called within Section 4.4, “Command
substitution”.

Example 4.4. Defining and using functions.

This example shows a function being defined and called with serveral times with differing parameters.

>function bar { echo $1; }
>function foo { echo -n $1; ["$2" = "bar"] && bar tree || echo "foo bar baz"; }
>foo baz
bazfoo bar baz
>foo baz bar
baztree
>foo baz tree
bazfoo bar baz
>

4.4. Command substitution
Command substitution allows the output of a command to be substituded anywhere a variable can be used. The command
may be a function call, shell builtin or external program.

Shell script

17

Example 4.5. Using substitutions.

This example shows the use of command substitution with a builtin, a function and an external program.

>lsout="$(ls \(flash1\))"
>echo ${lsout}
MD5Sums MD5Sums.able bin bootimg.000 bootimg.009 doc
>fbout="$(fbset)"
>echo ${fbout}
mode 800x600-60 # D: 40.000 MHz, H: 37.878 KHz, V: 60.315 Hz, geometry 800 600
>function foo { echo -n $1; echo "baz"; ["$2" = "bar"] || echo "foo bar baz"; }
>funcout="$(foo bar baz)"
>echo ${funcout}
barbazfoo bar baz
>

4.5. Shell script
ABLE has the ability to execute shell scripts. These are simple text files with commands in them. The shell commands in
the file are executed in consecutive order as if they had been typed at the command line.

To be recognised, a script file must start with a line #!sh or #!/bin/sh. After this, commands may be placed on each
line as desired. Lines starting with a “#” are interpreted as comments and are ignored.

Example 4.6. Example shell script

This is an example shell script which tests the test command and shell quoting.

#!/bin/sh
ABLE shell test
echo "TEST: test"
[1 -lt 2] && echo "1 < 2"
[2 -lt 1] && echo "2 < 1"
[2 -gt 1] && echo "2 > 1"
[1 -gt 2] && echo "1 > 2"
echo "TEST: simple variable expansion"
foo=bar
echo $foo
echo "TEST: variable expansion within test"
bar=10
[1 -lt $bar] && echo "1 < $bar"
[1 -gt $bar] && echo "1 > $bar"
echo $bar
echo "TEST: quoting tests"
echo TEST: single quotes
echo '\\ \$ \w $bar $+ $foo \$foo'
echo TEST: double quotes
echo "\\ \$ \w $bar $+ $foo \$foo"
echo TEST: no quotes
echo \\ \$ \w $bar $+ $foo \$foo
echo TEST: quoted single var
echo "foofoo"
echo TEST: quoted curly brace single var
echo "${foo}${foo}"
echo TEST: positional parameters
echo There are $# positional parameters
echo All parameters ">$*< after"
echo Parameter 0,1,2 ">$0 $1 $2<"

Shell script

18

echo Parameter 0:$0
echo Parameter 1:$1
echo Parameter 2:$2
echo Parameter 3:$3

When executed, the above script should produce the following output.

>(tftpboot)test.sh one two three
readudp: incorrect length
TEST: test
1 < 2
2 > 1
TEST: simple variable expansion
bar
TEST: variable expansion within test
1 < 10
10
TEST: quoting tests
TEST: single quotes
\\ \$ \w $bar $+ $foo \$foo
TEST: double quotes
\ $ \w 10 $+ bar $foo
TEST: no quotes
\ $ w 10 $+ bar $foo
TEST: quoted single var
barbar
TEST: quoted curly brace single var
barbar
TEST: positional parameters
There are 4 positional parameters
All parameters >one two three< after
Parameter 0,1,2 >(tftpboot)test.sh one two<
Parameter 0:(tftpboot)test.sh
Parameter 1:one
Parameter 2:two
Parameter 3:three
>

19

Chapter 5. ABLE Console
ABLE generally has to communicate with the end user, it does this by using any of the connected devices for which it has
drivers.

5.1. Console drivers
Console drivers are categorised as either input and output sources. The sources for the console can be found using the
console command.

Example 5.1. Using the console command to show available drivers

This shows the available drivers and if they can be used for read, write or both.

>console -d
(-w-a) s3c2410x-video
(r---) usbkbd
(rw--) multi
(rw--) null
(-w--) all-wr
(r---) all-rd
(rw--) serial
(rw--) (s3c2410_serial0)
(rw--) (s3c2410_serial1)
(rw--) (s3c2410_serial2)
(rw--) (u16550_serial0)
(rw--) (u16550_serial1)
>

These drivers allow access to the peripherals on a system. They can be used to provide input from a user to ABLE and output
from ABLE to the user. Any number of them may be used simultaneously, it is possible (though not practical) to have ABLE
appear on every serial port and video console attached to a system.

Table 5.1. Available console drivers

Driver Description

s3c2410x-video Video display driver for the s3c2410 internal controller.

sm501-video Video display driver for the Silicon motion 501 controller.

usbkbd Reads input from any HID USB keyboard attached to the system.

ps2kbd Reads input from any PS2 keyboard attached to the system

null The null driver is a special driver which swallows all output sent to it and never produces any output.

multi The multi driver is a pseudo driver which allows for multiple console sources, it should never be
directly used.

all-wr The “all write” driver is the default output driver if no other is specified. This driver sets the output
to be all the available output devices. However it only selects the basic serial driver not any of
the other possible serial targets, this is to limit ABLE to a sensible number of peripherals (on some
boards there might be more than ten serial ports which will probably be connected to peripherals
which would not respond well to the ABLE console)

all-rd The “all read” driver is the read equivalent to the all-wr driver. This driver selects all the available
input sources, again only selecting the basic serial driver.

serial This driver is a read/write capable driver which is connected to what is historically considered the
“console” serial port. This is typically the first serial port. On the EB2410ITX, for instance, it is
the first internal port of the s3c2410, on the EB110ATX it is the footbridge debug port and on the

Setting parameters on serial drivers

20

Driver Description

EB675001DIP it is the main 16550 based port. The port will have the settings of 115200 baud, eight
data bits, no parity and a single stop bit.

(s3c2410_serialX) The serial ports on the s3c2410 are presented as a series of three devices. These devices may have
their settings (baud rate, parity etc.) altered as required at initialisation time or later with the setopt
command.

(u16550_serialX) A given system may have several standard 16550 based serial ports each will have an entry. As with
all serial devices (except the serial driver) in ABLE the port settings may be altered as required
at initialisation time or later with the setopt command.

5.2. Setting parameters on serial drivers
The serial port drivers (s3c2410_serial and u16550_serial) can be given parameters when they are initialised. This is achieved
by placing additional comma separated parameters after the driver name within the containing brackets.

The configuration format is in one of the forms:

(driverX)
(driverX,baud)
(driverX,baud,data-format)

Options may be omitted. Such options are either left as the current settings or set to defaults as necessary. The default settings,
when the ports are first initialised, is 115200 baud, eight data bits, no parity and a single stop bit (115200,8n1)

The data format is specified as three single character values. The first denotes the number of data bits, typically eight or seven.
The second sets the parity type one of none (n), odd (o) or even (e). The third is the number of stop bits either one or two.

Example 5.2. Setting serial console driver parameters

To use the s3c2410_serial driver first port at 19200 baud using the default data format

(s3c2410_serial0,19200)

To use the s3c2410_serial driver second port at 38400 baud, 8 data bits, no parity and a single stop bit

(s3c2410_serial1,38400,8n1)

To use the u16550_serial driver first port with the current baud rate, 8 data bits, no parity and a single stop bit

(u16550_serial0,,8n1)

5.3. Configuring the console system
At boot, the console output is sent to all the devices listed in console.write. The list is a comma separated set of driver
names (the serial devices must be bracketed and may contain additional parameters). Likewise for the console input using the
 console.read non volatile variable. When these variables are not set they default to all-wr and all-rd respectively.

The current active drivers may be displayed with:

console -l

The output of this command is split into two sections for the write(console output) and read(console input).

Configuring the console system

21

Example 5.3. Showing the consoles of an unconfigured system

>nvshow console.write
console.write (is unset)
>nvshow console.read
console.read (is unset)
>console -l
Console (write):
all write:
 => s3c2410x-video: S3C24XX Framebuffer (640x480 @ 60Hz, 31.5 KHz)
 => null: NULL
 => serial: low level serial

Console (read):
all read:
 => usbkbd: USB Keyboard Driver
 => null: NULL
 => serial: low level serial

>

Once a system is running it is sometimes useful to add an additional driver. Adding a driver allows access to ABLE on that
new device. This can be especially useful in scripts which can add displays based upon shell decisions. Section 5.5, “Practical
use of the console system” contains more examples on using this feature.

Example 5.4. Adding console drivers to a running system

This example shows the adding of the second s3c2410 serial port, once added the serial port can be used to interact with ABLE

>console -l
Console (write):
all write:
 => s3c2410x-video: S3C24XX Framebuffer (640x480 @ 60Hz, 31.5 KHz)
 => null: NULL
 => serial: low level serial

Console (read):
all read:
 => usbkbd: USB Keyboard Driver
 => null: NULL
 => serial: low level serial

>console -a (s3c2410_serial1)
adding console (s3c2410_serial1)
>console -l
Console (write):
all write:
 => (s3c2410_serial1): fd (s3c2410_serial1)
 => s3c2410x-video: S3C24XX Framebuffer (640x480 @ 60Hz, 31.5 KHz)
 => null: NULL
 => serial: low level serial

Console (read):
all read:
 => (s3c2410_serial1): fd (s3c2410_serial1)
 => usbkbd: USB Keyboard Driver
 => null: NULL
 => serial: low level serial

Setting the logging level

22

>

5.4. Setting the logging level
The ABLE console output is split into levels of importance. Only messages with a level lower than the current logging level
are displayed.

The logging level is set at boot time by the console.level variable, if unset the value defaults to 6. All messages of
any priority can be viewed with the sysmsg command after boot.

Warning

Setting this value to 0 will result in no output being displayed from ABLE unless a critical error occurs. However
the console input will still function correctly. The console level can be dropped by using

console -s 6

This will allow what is being typed to be seen once more.

5.5. Practical use of the console system
The practical applications of the console system may not be immediately apparent. The flexibility of the system allows for
configurations in deployed solutions which meet the needs to the developer.

The following sections outline a few use cases from which a developer should be able to construct many functionalities.
Some of these make use of the scripting capabilities which are described in Chapter 3, Command Line Interface.

Warning

It is possible to configure the console settings so no input or output can be made to the console! In this case the
non volatile ignore jumper on the board should be used to recover the unit. This will cause the default “all” drivers
to be used.

5.5.1. Basic serial debug console
In this scenario the requirement is to get a serial console on the first 16550 based serial port only. It should be configured
to 9600 baud, eight data bits , no parity and a single stop bits.

This is achieved trivially by setting console.read and console.write to

(u16550_serial0,9600,8n1)

Example 5.5. Setup of basic serial console

>nvshow console.write
console.write (is unset)
>nvshow console.read
console.read (is unset)
>nvset console.write (u16550_serial0,9600,8n1)
>nvshow console.write
console.write = (u16550_serial0,9600,8n1)
>nvset console.read (u16550_serial0,9600,8n1)
>nvshow console.read
console.read = (u16550_serial0,9600,8n1)
>nvsave
verifying written data...
>

No console at all

23

5.5.2. No console at all
In this scenario no console output whatsoever is required. Generally this is only useful when a project has reached final
production and a fixed OS image is being retrieved from reliable storage.

This is straightforward to achieve by using the “null” driver. Set the console.read and console.write variables to:

null

Be sure to set the boot.cmd and other boot variables to correctly boot your OS before setting this or you will need to
recover the system with the physical non volatile ignore jumper.

As a precaution against loosing the console completely you can add a

console -a serial

to the end of the boot.cmd variable.

Example 5.6. Using the null drivers safely

This example shows how the addition of the console command can recover from a situation where otherwise the physical
jumper would have to be accessed.

>nvset boot.cmd "(hd0)/nosuchkernel ; console -a serial"
>nvset boot.auto on
>nvset console.write null
>nvset console.read null
>nvsave
verifying written data...
>reset
Autoboot attempt 2, Press any key to abort
Autobooting in 6
>

Even using this technique it is easy to get a system into an unbootable state, because of this setting the consoles to null is
generally inadvisable if another approach can be found.

5.5.3. Displaying a logo and boot abort
This scenario the console is required if user input is given at a specific point in the boot sequence after a boot logo is displayed.

This is a slightly more complex situation and the developer may decide to place this in a shell script rather than try and cram
it all into a single boot.cmd line. The general solution is:

• Set the console logging level to 0 to inhibit any other ABLE output

• Use the display(1) command to plot the image

• Use the echo command to display the user message

• Use the read command to wait for user input with a two second timeout

• If the user input is the correct key to abort the boot process set a variable to indicate this

• If the abort variable is unset start the OS

• Set the console log level to something reasonable and start a shell

Displaying a logo and boot abort

24

Example 5.7. A method to display logo and boot abort

#!sh
display -d s3c2410x-video (tftpboot)logo.bmp.Z
echo -n "press c to enter ABLE"
ABORT=no
read -t 2 -n 1 -s RES && [$RES = "c"] && ABORT=yes
[$ABORT = "no"] && (hd0)kernel root=/dev/hdc1 console=ttySAC0,115200
console -s 6
sh -i

This script would be stored somewhere accessible to ABLE(flash, hard disc or network) and boot.cmd set to that location.
Once verified, consoles could be configured as required and console.level set to 0.

25

Chapter 6. Starting an Operating System
ABLE is a powerful tool but its ultimate aim is simply to obtain the operating system image and start its execution with the
appropriate parameters. This chapter shows how to use ABLE to achieve this aim using the Command Line Interface.

6.1. Data sources
To obtain the operating system image, ABLE can retrieve data from a number of sources. A source may be a “block” device
where data can be random accessed in discrete chunks or a “stream” device where data can be accessed serially. ABLE
insulates the user from these details and provides a unified interface.

Any device, for which ABLE has a driver, can act as a source. Devices that ABLE can create sources from include ATA
hard drives, ATAPI cdroms, memory devices, USB devices and network interfaces.

ABLE identifies a sources by placing the source name in brackets. Sources can be found from the ABLE command line by
using the dumpfile(1) command on the “root” directory.

Example 6.1. Using the ls command to list available sources.

The dumpfile(1) when performed on the “root” directory, with the -a option, shows all available sources.

>ls -a -l /
drwxr-xr-x 1 0 0 0 .
drwxr-xr-x 1 0 0 0 ..
brw-rw-rw- 1 0 0 0, 0 nor0
brw-rw-rw- 1 0 0 0, 0 hdc1
brw-rw-rw- 1 0 0 0, 0 hdc
brw-rw-rw- 1 0 0 0, 0 tftpboot
brw-rw-rw- 1 0 0 0, 0 xmodem
brw-rw-rw- 1 0 0 0, 0 console
brw-rw-rw- 1 0 0 0, 0 char4
brw-rw-rw- 1 0 0 0, 0 char3
brw-rw-rw- 1 0 0 0, 0 char2
brw-rw-rw- 1 0 0 0, 0 char1
brw-rw-rw- 1 0 0 0, 0 char0
brw-rw-rw- 1 0 0 0, 0 24cxx0p1
brw-rw-rw- 1 0 0 0, 0 24cxx0
brw-rw-rw- 1 0 0 0, 0 nand0p2
brw-rw-rw- 1 0 0 0, 0 nand0p1
brw-rw-rw- 1 0 0 0, 0 nand0
brw-rw-rw- 1 0 0 0, 0 s3c2410x
lrwxrwxrwx 1 0 0 11 hd0 -> (hdc1):ext2
lrwxrwxrwx 1 0 0 5 s3c2410_serial2 -> char4
lrwxrwxrwx 1 0 0 5 s3c2410_serial1 -> char3
lrwxrwxrwx 1 0 0 5 s3c2410_serial0 -> char2
lrwxrwxrwx 1 0 0 5 u16550_serial1 -> char1
lrwxrwxrwx 1 0 0 5 u16550_serial0 -> char0
lrwxrwxrwx 1 0 0 8 nvram0 -> 24cxx0p1
lrwxrwxrwx 1 0 0 15 flash1 -> (nand0p2):jffs2
lrwxrwxrwx 1 0 0 7 flash0 -> nand0p1
>

The sources listed as links are “aliases” which build upon or “cook” the behaviour of other sources.

Alias sources

26

6.2. Alias sources
The previous section described how to identify a possible data source within ABLE. Typically these data sources are a raw
unprocessed set of data, to be useful a data source is generally partitioned and has a filing system placed upon it. The process
of building upon a raw data source is sometimes referred to as “cooking” which gives a cooked data source.

To make the users interaction with ABLE easier a set of alias sources are automatically generated. Each of these aliases may
be referred to as a source in its own right. The dumpfile(1) command can be used to list these aliases.

Example 6.2. Using the ls command to list cooked sources

The dumpfile(1) command performed on the root directory.

>ls -l /
lrwxrwxrwx 1 0 0 11 hd0 -> (hdc1):ext2
lrwxrwxrwx 1 0 0 8 nvram0 -> 24cxx0p1
lrwxrwxrwx 1 0 0 15 flash1 -> (nand0p2):jffs2
lrwxrwxrwx 1 0 0 7 flash0 -> nand0p1
>

ABLE detects and creates a cooked source for every raw source that can provide files. Each of the raw sources will be
examined for recognised filesystems and, if a partitioned device, each partition will be scanned. ABLE can interpret several
filesystems, these include EXT2, FFS, ISO9660 (including rockridge extensions) and FAT. Filesystems are only scanned
for on suitable sources i.e. ISO9660 filesystems would only be searched for on cdrom sources.

The user need not use the aliases and may specify the full source descriptor if desired. The sources “(hd0)” and “((hdc1):ext2)”
from the previous examples are completely equivalent. The full construct may be used to attempt to force ABLE to interpret
filesystems where it has not automatically detected one but this will almost certainly result in unexpected and incorrect
behaviour.

6.3. Network sources
The network is treated differently to other sources. It is accessed through a source which defines the access protocol. Currently
the only supported access protocol is TFTP. The tftpboot source uses the currently configured network interface which is set
with ifconfig. Chapter 7, Networking describes the configuring and setup of network interfaces in more detail.

The tftpboot source cannot be enumerated, that is a list of files cannot be obtained with the ls command, the filename to be
retrieved must be already known. To use the filename provided by the DHCP server the tftpboot source can be used without
a file specified.

Example 6.3. Using the tftpboot source

This example shows that the tftpboot source is unable to enumerate the contents of the source, using the tftpboot source with
an explicit filename and using the server provided filename when its present and when not set.

>ls -l (tftpboot)
-r--r--r-- 0 0 0 -1 (tftpboot)
>sum (tftpboot)batty
18014 33 (tftpboot)batty
>sum (tftpboot)
tftpboot: using bootp filename 'batty'
18014 33 (tftpboot)
>sum (tftpboot)
tftpboot: using bootp filename ''
warning: filename is null, tftp may fail
Error loading (tftpboot) :No such file or directory
>

XModem source

27

6.4. XModem source
The XModem source is treated differently to other sources. It provides a way to obtain files over a serial connection using
the XModem protocol. The implementation of the XModem protocol within ABLE accepts 128byte or 1Kbyte packets and
checksum or CRC16 checks.

The filename used with the XModem source is the serial port source on which to perform the transfer, these can be identified
as aliases for char sources within a full source listing (see Example 6.1, “Using the dumpfile(1) command to list available
sources.”). The parameters for a serial driver source are more fully described in Section 5.2, “Setting parameters on serial
drivers”.

If the transfer is performed on the same source as is being used for the console care must be taken not to use commands
which produce output during their reading of the file. Because of this the sum command may be used in its non verbose
mode but would cause the transfer to fail if the -v option is used because it would output . characters to denote progress.
Similarly the dumpfile and cat commands would cause a failure. Obviously this is not an issue if the transfer source is not
used as a source for the console.

Example 6.4. Using the XModem source

This example shows a file being checksummed from the first S3C2410 serial port source. The C characters are the XModem
receive characters signifying the start of the XModem sequence. The same file is then checksummed using the network
interface to show the correctness of the transfer.

>sum (xmodem)s3c2410_serial0
CCCCCC
39872 33 (xmodem)s3c2410_serial0
>sum (tftpboot)batty
39872 33 (tftpboot)batty
>

6.5. Navigating a filesystem
Sources with filesystems that support enumeration (EXT2, ISO9660 etc.) can be browsed and navigated. A filesystem ar-
ranges information as files within directories. The file navigation commands (see Chapter 12, File Navigation) can be used
to change the present working directory (PWD) and enumerate (list) the contents of directories.

A filesystem is presented as a hierarchical tree of directories which contain files and more directories. ABLE presents di-
rectories in the UNIX® manner and includes the . and .. directories which represent the current directory and the parent
directory respectively. Any file or directory name prefixed by a . is considered “hidden” and will not be listed with the ls
command unless the -a option is used.

ABLE starts with the PWD set to the root directory /. As already seen in Example 6.1, “Using the dumpfile(1) command
to list available sources.” this directory contains all available sources, by default only the alias sources are listed, the raw
sources being “hidden”.

The cd command is used to change the PWD. The dumpfile(1) command with no parameters lists the available files in
the PWD.

Once a file is located the file manipulation commands can be used (see Chapter 13, File manipulation commands) to examine
or verify the file. The file command is especially useful for determining if ABLE can identify a file as an operating system
image.

6.6. How ABLE identifies files.
ABLE uses a set of heuristics to determine a files contents. The methods used include “magic” numbers (sequences of well
known values at fixed offsets in the file) and common executable binary format headers. The overall approach is similar to
the UNIX® file command which is provided with the ABLE shell built-in file command.

ABLE shell script

28

Once a files contents are identified ABLE will use the appropriate module to load and execute the file. If a unrecognised
filetype or one for which no loader module is present, ABLE will report the error and return to the command line.

6.6.1. ABLE shell script
This file type is identified by the string “#!sh” in the first four bytes of the file. Such files are executed with the ABLE shell
as detailed in Section 4.5, “Shell script”.

6.6.2. ABLE executable
This file type is identified by the hexadecimal value AB1E0001 at the beginning of the executable file. This filetype is used
for ABLE binary program extensions for code which it is not desirable to ship within ABLE because of space or licencing
constraints. Examples of such programs are the romwrite reflash tool and batty test tool.

6.6.3. ARM Linux® zImage
This file type is identified by the hexadecimal value 016F2818 thirty six bytes into the file. This file type is used for com-
pressed Linux® kernel images.

When a file of this type is executed ABLE sets up an appropriate parameter list and starts execution of the kernel image.
Full details of the ARM Linux® booting procedure can be found in the Booting ARM Linux [http://www.simtec.co.uk/
products/SWLINUX/files/booting_article.html] document.

6.6.4. ELF and AOUT files
The ELF and AOUT binary file detection is provided for NetBSD and OpenBSD operation. The ELF header is detected from
the hexadecimal value 464C457F at the beginning of the file and the various AOUT formats with several differing magic
numbers (The AOUT types supported are the old “impure” format, the read-only text format, the “compact” demand load
format and the demand load format.

When a file of this type is executed the relevant sections are loaded and relocated as described by their binary headers. The
code is entered at its entry point with the MMU running and the parameters and command line passed as expected by the
BSD kernel.

Although the Linux® kernel can be extracted as an ELF object ABLE is unlikely to execute the image correctly, the zImage
format should be used.

6.6.5. UNIX® Compress files
UNIX® compress files are identified by their first two bytes which contain 0x9D and 0x1F. These files when loaded (to be
executed) are decompressed and the result file typed again.

6.6.6. Gzip files
Gzip files are identified by their header of 0x8B1F at the beginning of the file. These files when loaded (to be executed) are
decompressed and the result file typed again.

6.6.7. Images, text and data files
These files are identified by various methods but all share the common property that they cannot be executed. These files
must be manipulated with other commands such as the display(1) command for images, the cat command for text and the
dumpfile(1) for data.

6.6.8. Motorola S-Record
Files of this type are identified by their format which must be correct for the first few lines of the file. When loaded the
whole file must be of the correct format.

http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html

Motorola S-Record

29

The recognised S-Record format is well defined. Each file consists of a series of lines. Each line begins with an S character
and is terminated by a newline. Each line represents an individual record, its type is determined by the second character on
the line (0 to 9) followed by a record length, type dependant data and finally a checksum. All data after the type field is
presented as 8 bit octets coded as two hexadecimal values e.g. the value 255 is presented as the text FF.

Figure 6.1. Outline of Motorola S-Record

The checksum is calculated as a ones complement of the data octets including the length.

The header record is typically the first record in the file, ABLE does not interpret this record beyond printing the data section
as ASCII output on the console. Any number of headers may be included as they have no impact on the decoding of the
other lines.

Header record

The four byte (32 bit) addressed data record may be repeated as often as required to load all the program into memory. The
four byte address gives access to the entire 4GB memory region of the ARM memory map. The address is specified as a
physical location.

Four byte addressed data

The four byte (32 bit) address end record is used to specify the address that execution will start from. The address is specified
as a physical location. This record should only occur once at the end of the data.

Four byte addressed data end.

During the parsing of an S-Record it is possible a syntax error in the input data may occur. If this happens an error report
will be reported in the form:

error 1 on line 1

Table 6.1. S-Record loader error codes

Code Error

1 Line didn't start with S

2 Line finished before type

3 Type was not 0-9

4 Line finished before length

Starting an Operating System

30

Code Error

5 Length field contained invalid characters

6 Line finished early in data

7 Data contained invalid characters

8 Checksum failed

Where the errors refer to invalid characters this means characters other than 0-9 and A-E were found in the line.

Example 6.5. An example S-Record

The S0 record starts the file. The S3 records contain the data. The S7 record contains the entry address and completes the
file load.

S0030000FC
.
.
S325000004403C0880018D08DD900000000011000026000000003C0880012508DC50C50000B401
S32500000460C50100B8C50200BCC50300C0C50400C4C50500C8C50600CCC50700D0C50800D4FA
S32500000480C50900D8C50A00DCC50B00E0C50C00E4C50D00E8C50E00ECC50F00F0C51000F49A
S325000004A0C51100F8C51200FCC5130100C5140104C5150108C516010CC5170110C518011434
.
.
S70500000000FA

6.7. Starting an Operating System
Once a complete file path to an operating system image has been decided upon the boot process is simple. ABLE may be
used to start a recognised operating system in two ways.

The two methods for starting an operating system are the “setargs, load and boot” method or the “command line” method. As
can be seen from Example 6.6, “Using the "setargs, load and boot" method to start a Linux kernel” and Example 6.7, “Using
the "command line" method to start a Linux kernel” both these methods produce exactly the same result and the kernel is
passed exactly the same parameters in both cases.

The “command line” method is preferred as it is simpler and more obvious but there are some limited circumstances where
it is not sufficient (multiple boot files) and the “setargs, load and boot” is necessary.

6.7.1. The "setargs, load and boot" method

The "setargs, load and boot" method as its description suggests uses a three stage method in order to start an operating
system:

• The setargs command is used to set the arguments with which to call the OS.

• The load command with the path to the OS kernel or image to load.

• The boot command to start the loaded image with the specified parameters.

This method gives the most flexibility and control but is cumbersome to use.

The "command line" method

31

Example 6.6. Using the "setargs, load and boot" method to start a Linux® kernel

>setargs "root=/dev/hda1 console=ttySAC0,115200"
>load (hd0)vmlinuz
loaded (hd0)vmlinuz, 0x16a6e0 bytes at 0x00008000
>boot
boot: booting 'linux'
Booting Linux
Uncompressing Linux...
Linux version 2.6.11 (vince@gerald)
CPU: ARM920Tid(wb) [41129200] revision 0 (ARMv4T)
CPU0: D VIVT write-back cache
CPU0: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
CPU0: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
Machine: Simtec-BAST
Memory policy: ECC disabled, Data cache writeback
CPU S3C2410A (id 0x32410002)
S3C2410: core 266.000 MHz, memory 133.000 MHz, peripheral 66.500 MHz
S3C2410 Clocks, (c) 2004 Simtec Electronics
USB Power Control, (c) 2004 Simtec Electronics
Built 1 zonelists
Kernel command line: root=/dev/hda1 console=ttySAC0,115200
...

A user wishing to use the this method in the boot.cmd setting should make use of the “;” to separate the commands. To set
the command from the above example would be

nvset boot.cmd "setargs root=/dev/hda1 console=ttySAC0,115200"; \
load (hd0)vmlinuz ; boot

6.7.2. The "command line" method

The "command line" method is a less flexible but much simpler and obvious method of starting an OS kernel or image.
The image to be executed is simply given on the command line followed by its parameters, exactly like running any other
command.

Note

Any parameters set with the setargs command are not considered when using this method.

Starting an Operating
System Automatically

32

Example 6.7. Using the "command line" method to start a Linux® kernel

>(hd0)vmlinuz root=/dev/hda1 console=ttySAC0,115200
loaded (hd0)vmlinuz, 0x16a6e0 bytes at 0x00008000
boot: booting 'linux'
Booting Linux
Uncompressing Linux...
Linux version 2.6.11 (vince@gerald)
CPU: ARM920Tid(wb) [41129200] revision 0 (ARMv4T)
CPU0: D VIVT write-back cache
CPU0: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
CPU0: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets
Machine: Simtec-BAST
Memory policy: ECC disabled, Data cache writeback
CPU S3C2410A (id 0x32410002)
S3C2410: core 266.000 MHz, memory 133.000 MHz, peripheral 66.500 MHz
S3C2410 Clocks, (c) 2004 Simtec Electronics
USB Power Control, (c) 2004 Simtec Electronics
Built 1 zonelists
Kernel command line: root=/dev/hda1 console=ttySAC0,115200
...

6.8. Starting an Operating System Automatically
ABLE has a flexible system to automatically run a given user command at boot time. The command to be run is controlled
by the boot.cmd non volatile variable. If the boot command is not set it defaults to the autoboot command.

The execution of the boot process may be prevented by setting the boot.auto variable to true. If the boot.auto variable
is not set or set to false the boot command is run after a delay set by the boot.timeout variable. The delay is in seconds
and allows the user to abort the boot process by pressing a key. The console input from which the keypress is accepted is
described in detail in Chapter 5, ABLE Console.

The boot command is executed by the ABLE shell. Any shell script command may be placed in the boot.cmd seperated
by semicolons. If more than a small number of commands need to be issued they should be placed in a shell script and the
script executed.

Example 6.8. Displaying a logo during the automatic boot process

This example shows how the boot.cmd can be set to display a logo on the video console before continuing with an auto-
mated boot using the autoboot command.

>nvset boot.cmd "display -d s3c2410x-video (tftpboot)logo.bmp.Z ; autoboot"
>nvshow boot.cmd
boot.cmd = display -d s3c2410x-video (tftpboot)logo.bmp.Z ; autoboot
>nvset boot.auto true
>nvshow boot.auto
boot.auto = on
>nvset boot.timeout 1
>nvshow boot.timeout
boot.timeout = 1
>nvset console.level 5
>nvsave
>reset
No Available Targets
>

Some of the examples presented in Section 5.5, “Practical use of the console system” make user of the automatic boot process
and may be of interest.

Starting an Operating
System Automatically

33

Figure 6.2, “Initial boot operations” shows the logic of the initial start process. The operation is to loop for keyboard input for
the time specified in boot.timeout. If no user input is received before the timeout the boot.cmd variable is inspected,
if set the command is executed with the ABLE shell otherwise the autoboot command is executed by default.

Figure 6.2. Initial boot operations

Flowchart for the initial boot operations.

34

35

Chapter 7. Networking
ABLE has basic networking facilities allowing it to transfer data using the User Datagram Protocol (UDP) running over
Internet Protocol (IP).

ABLE has drivers for a common set of Ethernet adaptors encompasing those found on Simtec Electronics boards and common
PCI cards. The supported cards include those based upon Davicom DM9000 chipset, Tulip chipset, Realtek chipset and
the traditional NE2000 based devices. ABLE does not currently have support for serial based protocols such as Serial Line
Internet Protocol (SLIP) or Point to Point Protocol (PPP) but there is provision for XModem protocol (see Section 6.4,
“XModem source”)

IP network settings can set maunually or be retrieved from the network from a Dynamic Host Configuration Protocol (DHCP)
or Bootstrap Protocol (BOOTP) server.

To transfer files ABLE uses the Trivial File Transfer Protocol (TFTP) protocol. TFTP is a very simple protocol it lacks the
ability to list directory contents, has no authentication or encryption mechanisms and performs its transfers in lock-step with
only one packet on the network at any time which reduces its performance. Despite its lack of facilitys it is sufficient for
retreving files.

7.1. Finding a network interface
ABLE will create an interface for every supported device it can find. All IP capable interfaces available on a platform can
be listed with the ifconfig command.

>ifconfig -a
dm0 Link encap:Ethernet HWaddr 00:01:3d:00:01:6a
 inet addr:0.0.0.0 Mask:0.255.255.255
 gateway addr:0.0.0.0 tftpserver:0.0.0.0
 UP MTU:1500 Metric:1

ne0 Link encap:Ethernet HWaddr 00:01:3d:00:01:6b
 inet addr:0.0.0.0 Mask:0.0.0.0
 gateway addr:0.0.0.0 tftpserver:0.0.0.0
 MTU:1500 Metric:1

>

In this case two interfaces are available dm0 and ne0. Some platforms may have more than one of the same type of interface
which will be presented as dm0, dm1, dm2 etc.

7.2. Configuring a network interface
Once the required interface is identified it can be configured for use. This is achieved using the up option to the ifconfig
command. This is only required if the required interface does not already have the UP flag, in the above case the dm0 interface
is marked such because the first interface is marked up by default.

If the DHCP protocol is used no futher configuration is required and the settings will be recovered the first time the interface
is accessed.

If an automatic server is unavailable or cannot be used for other reasons manual configuration is neccisary. Applying IP
settings manually requires an IP address and netmask and an optional default gateway. Although not an IP setting the address
of the TFTP server is specified too. The ifconfig command is used to set the desired values.

Full details on setting fixed addresses and other aspects of configuring interfaces can be found in the ifconfig command
documentation.

Using the network to obtain files

36

7.3. Using the network to obtain files
Once the interface settings are configured files may be retrieved from the network using the TFTP protocol. Files are accessed
with the (tftpboot) source. If no filename is given the one provided by the DHCP server will be used, if the DHCP
server doesn't provide a filename one based upon the hardware unique ID is used (the hwinfo command can be used to
find the unique ID).

Most of the operations described here are not usually required if a properly configured DHCP and TFTP servers are used. Any
file that can be accessed using TFTP can be used wherever a filename is used within ABLE, no distinction between network
and local files is explicitly made (the one exception being that filesystem stat calls cannot be sensibly answered via TFTP).

The ability to use the network in this way allows for a very rapid compile, execute and test cycle. No physical media is
involved and mistakes can be rectified and retested in a short time.

Example 7.1. Executing a program using the tftpboot pseudo filesystem

This example shows the batty board test tool being retrieved over the network using a default DHCP configuration.

>(tftpboot)batty
DHCP: Attempting network autoconfiguration for dm0.
DHCP: Automatic network configuration for dm0 successful.
DHCP: Address: 192.168.7.250
DHCP: Netmask: 255.255.255.0
DHCP: Gateway: 192.168.7.1
DHCP: Server: 192.168.7.1
DHCP: DNS server: 192.168.7.1
Simtec Board Test Tool, Version 1.00
Copyright 2005-2009 Simtec Electronics

OSIRIS (IM2440D20) Test Suite

Testing S3C24XX CPU Core
 CPU ID 32440001, OK [S3C2440A]

Testing S3C24XX 4kB internal SRAM block
 Pattern: all ones
 Pattern: all zeros
 Pattern: alternate zero/ones (LSB set)
 Pattern: alternate zero/ones (LSB unset)
 Writing address to each location

...

DONE: 37 tests, 37 ok, 0 failed, 0 warnings
PASSED: all tests OK
>

37

Chapter 8. Upgrading
ABLE is usually stored in non-volatile memory. On boards on which ABLE runs there are two types of flash memory in
common usage. These are NOR and NAND devices. The NOR devices are relatively small, perhaps 16 or 32Mb, and ABLE
is executed directly from them. The NAND devices are much larger, a gigabit or more, and behave more like a disc drive.
ABLE stored on NAND devices must be copied into system RAM and executed from there.

Upgrading ABLE on these two memory types is described in seperate sections, the user must assure themselves they are
using the correct procedure for their board. Some boards have both forms of memory and care must be taken to overwite
the correct memory device.

All systems (except those lacking an MMU such as the EB675001DIP) have the ability to use the reloader tool to load a
copy of ABLE into RAM, instead of writing directly to flash. This is a recommended step to ensure the new version of ABLE
is suitable before making the update permenant.

Caution

It is generally recommended that users only upgrade if they are suffering a specific issue with a prior version or
require an added feature. Every effort is made to ensure errors are not introduced in updates but Simtec Electronics
offer no warranty.

8.1. Upgrading a NAND based systems
NAND flash is accessed in "blocks", the blocks of the curently supported devices are either 16KiB or 128KiB in size. Storage
allocations are in block units. A detect-large-nand(1) utility is provided to allow the user to discover this information.

8.1.1. Obtaining Upgrades
Simtec Electronics generally provide ABLE upgrades for NAND as a JFFS2 image suitable for replacing the entire boot
partition. However the new version of ABLE can simply be copied into the mounted JFFS2 from Linux® if desired.

Upgrades to the latest version can be obtained for each supported product on the Simtec Electronics website from the products
firmware page. e.g The firmware page [http://www.simtec.co.uk/products/IM2440D20/firmware.html] for the IM2440D20.

Figure 8.1. IM2440D20 firmware page

IM2440D20 firmware webpage.

http://www.simtec.co.uk/products/IM2440D20/firmware.html
http://www.simtec.co.uk/products/IM2440D20/firmware.html

Applying the update

38

A version of ABLE which is up-to-date at the time of shipping is provided on the boards support CD. It is always recom-
mended that the latest update be obtained from the website in preference to the CD version.

8.1.2. Applying the update
The boot flash is partitioned into three areas:

A 16KB area for the IPL.
A 4080KB (4MB less 16KB) JFFS2 formatted area for ABLE images and tools.
A 61440KB (60MB, the remainder of the available NAND) area for user data or filesystems.
In order to upgrade the ABLE image the NFWrite tool must be used to write the JFFS2 images to the ABLE boot partition.
The exact commandline required varies with the type of NAND flash installed on the module.

The small page NAND devices require:

nfwrite -c0 -f -v (tftpboot)s3c2410x-able-apps-253-small-summary.jffs2 1-255

The large page NAND devices require:

nfwrite -c0 -f -v (tftpboot)s3c2410x-able-apps-253-large-summary.jffs2 1-31

8.2. Upgrading NOR based systems

8.2.1. Obtaining Upgrades
Simtec Electronics generally provide ABLE upgrades as a romwrite package which combines both the programming utility
and the upgrade in a single binary image.

Upgrades to the latest version can be obtained for each supported product on the Simtec Electronics website from the products
firmware page. e.g The firmware page [http://www.simtec.co.uk/products/EB2410ITX/firmware.html] for the EB2410ITX.

Figure 8.2. EB2410ITX firmware page

EB2410ITX firmware webpage.

A version of ABLE which is up-to-date at the time of shipping is provided on the boards support CD. It is always recom-
mended that the latest update be obtained from the website in preference to the CD version.

http://www.simtec.co.uk/products/EB2410ITX/firmware.html
http://www.simtec.co.uk/products/EB2410ITX/firmware.html

Loading the Upgrade

39

8.2.2. Loading the Upgrade
It may be upgraded either by running the romwrite ABLE executable or by reprogramming the non-volatile storage directly
e.g. by use of an EEPROM programmer.

The upgrade can be retrieved from any available boot device. Some examples for a EB2410ITX are:

cdrom - (cd0)eb2410itx-romwrite-v220.bin
tftp - (tftpboot)eb2410itx-romwrite-v220.bin
hard disc - (hd0)eb2410itx-romwrite-v220.bin

ABLE can navigate several types of filesystem Section 6.5, “Navigating a filesystem” has more details on how to locate
files. Upgrades, because of their transient nature, are typically retrieved from the network using TFTP Chapter 7, Networking
details configuring and using network interfaces.

ABLE may need to be moved to execute from memory on some platforms such as the EB7500ATX. This is achieved with
the shadow command. If the shadow operation is not performed, then romwrite will prompt the user to issue the shadow
command.

Example 8.1. The romwrite command requiring the shadow command

>(tftpboot)eb2410itx-romwrite-v174.bin
.............................boot: booting 'able app1'
ROM Write: Version 1.00
(c) 2002, 2003 Simtec Electronics

cannot run without ABLE shadowed.
use the 'shadow' command and then re-run this application
>

8.2.3. Running the upgrade
The romwrite command also performs several checks to ensure the update is suitable. These include downgrading and
checking the machine type matches the image.

Warning

Overriding any warnings may result in an inoperable system, so be sure you understand any warnings before con-
tinuing with the upgrade.

Example 8.2. The romwrite command producing warnings

>(tftpboot)eb110atx-romwrite-v173.bin
............................boot: booting 'able app1'
ROM Write: Version 1.00
(c) 2002, 2003 Simtec Electronics

Replacing current version 174 with image version 173
warning: Image version 173 is lower than running version 174
Image release number is 2003062801
warning: Image release 2003062801 is lower than running release 2003071701
warning: machine 3 is not supported by image
Warnings detected, proceed with upgrade (yes to continue) ? no
Upgraded cancelled by user input
>

The romwrite command may fail at the “Erasing Device” stage if the system supports physical non-volatile storage protec-
tion. This feature is currently present on all Simtec Electronics boards except the EB110ATX

Running the upgrade

40

A successful flash operation will result in a message asking the user to reset the platform. Until the system is reset, the old
version of ABLE is still running.

Example 8.3. The romwrite command completing successfully

>shadow
shadowing ABLE into main memory
>(tftpboot)able.bast
............................boot: booting 'able app1'
ROM Write: Version 1.00
(c) 2002, 2003 Simtec Electronics

Replacing current version 174 with image version 220
Image release number is 2003091701
Machine is BAST
Flash: SST 39LF160 [0x00BF, 0x2782]
Initialising programmer:
Erasing device: done
Writing data: done
Verifying data: done
Finishing operation: done
Done! - Please Reset machine
>

Part II. Built-in Command Reference
The sections in Part II split the commands available into groupings by type.

Each command is documented in the standard UNIX® manual page layout. The page is separated into several parts:

Name The name of the command and its purpose.

Synopsis Command synopsis which may illustrate several invocations.

Options This part is only present if the command has arguments. The command arguments are listed together with
a description.

Description Describes the detailed use of the command.

See also This optional section gives references to other commands which may be relevant.

Conventions used in this part:

• command text.

• {arguments} within { } are required.

• replaceable text for arguments.

• [arguments] within [] are optional.

• argument | argument separated by | cannot be used together.

• argument... is repeatable

• [expression]... entire expression is repeatable.

Table 6. Commands in alphabetical order

Command Purpose

autoboot Attempt to locate and boot suitable images automatically.

boot Starts loaded OS images

cat Displays contents of a text file

cd Change present working directory

console Controls ABLE console.

cp Copy a file.

date Show the current real time clock date and time.

dev Display and manipulate the ABLE device tree.

dhclient Configure a network interface using DHCP.

dump Displays an area of memory in hex dump

dumpfile(1) Displays a file in hex dump

echo Output some text to standard output

exit Exit ABLE shell

file Tests each argument in an attempt to classify it.

help Display help on built in commands

history Lists the commands in the command line history.

host Query the DNS.

hwinfo Print hardware information.

Command Purpose

ifconfig Network device configuration and selection

load Load executable images

dumpfile(1) List files in directory

mii MII phy control

meminfo Shows memory information.

memset Set range of memory to a specific value.

modules List ABLE modules

more Page a file to the console.

mutexes Display the internal mutual exclusion states for ABLE.

nc(1) Read data from a network socket.

nvclear Reset non-volatile settings to defaults

nvset Set non-volatile parameters

nvsave Save altered non-volatile settings

nvshow Show non-volatile parameters

nvunset Clears non-volatile parameter

passwd(1) Alter ABLE interactive shell passwd

peek Examine a memory location

pmu Power management control

poke Poke memory location

pwd Show present working directory

read Reads a line of input into shell variables

reset Reset machine

sbcd(1) Manipulates the board configuration data.

setargs Sets arguments to be passed to an OS started with the boot command

setdate Sets the date in the real time clock

setopt Sets device options.

settime Sets the real time clock

sh Start a new ABLE shell

showargs Shows arguments to be passed to any booted OS

shadow Moves ABLE into RAM

showhz Shows how long a system has been running

sleep Delay for a specified amount of time

sum Checksum a file

sysmsg Show system messages.

sysspeed Sets the system clock speed

tasks(1) Displays tasks running on system.

test(1) Performs test operations

uname(1) Print system identification

version(1) Display ABLE shell version

43

Chapter 9. Core Commands
These are the core commands available from the shell command line of ABLE from version 2.20 and later.

44

autoboot
autoboot — Attempt to locate and boot suitable images automatically.

Synopsis

autoboot

Description

This command may be executed from the Command Line Interface however it is usually executed as part of the automated
boot sequence as explained in Section 6.8, “Starting an Operating System Automatically”.

This command takes each filesystem in turn from the boot.fs variable and searches it for bootable images. As each possible
image is located a suitable set of parameters are derived (if possible) and the image and the commands are added to a list.

Once all the filesystems have been checked the list is displayed and a countdown commenced starting with the boot.timeout
value. If a user selects one of the entries they are then prompted to alter the guessed parameters and asked if they wish to
make the resulting command line the boot.cmd entry. If the user does not interact with the command before the countdown
completes the first entry on the list is attempted, if that fails the second is tried and so on down the list until all entries have
been attempted.

45

Figure 9.1. Autoboot command flowchart

Flowchart of the autoboot command

46

console
console — Controls ABLE console.

Synopsis
console [-a, --add {driver}] [-d, --drivers] [-s, --level [level]] [-l, --list] [-h, --help]

Options
-a, --add adds a new console driver to those currently active.

-d, --drivers shows all available display drivers which can be used with the -a switch.

-s, --level sets the logging level to new value (if given) and displays the current logging level.

-l, --list lists the currently active consoles.

-h, --help displays the short help text and exits.

Description
This command is used to manipulate the ABLE console system. At boot, the active console is determined by the
console.read and console.write values. The console command allows the current active console sources to be
altered while the system is running.

The console command allows the level of messages displayed (“logged”) on the console to be altered.

Any messages with a level lower than the current log level will be output to the console. For example, if the logging level
is set to 6 all messages except those of level Log and Debug will be shown.

The initial log level is controlled by console.level and defaults to 6 if the variable is unset.

Table 9.1. Defined console log levels

Level Value Description

Critical 0 Critical errors that will prevent proper continued operation of ABLE

Error 1 Error messages

Warn 3 Warning messages

Info 5 Messages which give more information about an operation

Log 7 Messages which are the result of normal operation

Debug 9 Debugging messages, these will rarely be seen on non debugging releases of ABLE.

Example 9.1. Using the console command

This example shows the use of the console command and its switches. First all the available drivers are listed, then the current
log level is displayed and changed. Finally the active drivers are listed, a new driver added and listed again to show the
addition was successful.

>console -d
(-w-a) s3c2410x-video
(r---) usbkbd
(rw--) null
(-w--) all-wr
(r---) all-rd

47

(rw--) serial
(rw--) (s3c2410_serial2)
(rw--) (s3c2410_serial1)
(rw--) (s3c2410_serial0)
>console -s
Current console level 6
>console -s 4
Changing log level 6 to 4
>console -l
Console (write):
all write:
 => s3c2410x-video: S3C24XX Framebuffer (640x480 @ 60Hz, 31.5 KHz)
 => null: NULL
 => serial: low level serial
Console (read):
all read:
 => usbkbd: USB Keyboard Driver
 => null: NULL
 => serial: low level serial
>console -a (s3c2410_serial1)
adding console (s3c2410_serial1)
>console -l
Console (write):
all write:
 => (s3c2410_serial1): fd (s3c2410_serial1)
 => s3c2410x-video: S3C24XX Framebuffer (640x480 @ 60Hz, 31.5 KHz)
 => null: NULL
 => serial: low level serial
Console (read):
all read:
 => (s3c2410_serial1): fd (s3c2410_serial1)
 => usbkbd: USB Keyboard Driver
 => null: NULL
 => serial: low level serial
>

48

date
date — Show the current real time clock date and time.

Synopsis
date

Description
Show the current real time clock date and time. The settime and setdate commands can be used to set the real time clock
and date.

Example 9.2. Using the date command

This example shows the use of the date command to get the current date and time, the date and time being kept across a
reset and finally used to show a delay.

>date
Fri Mar 10 01:38:00 2006
>date
Fri Mar 10 01:38:08 2006
>reset
selected all-wr for console write
selected all-rd for console read
DRAM: 128 Mb (134217728 bytes)
BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
ABLE 2.20 Copyright 2001-2005,2006 Simtec Electronics
hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
hdc: FUJITSU MHF2043AT: ATA PIO mode 4
hdc:Diagnosing disc drive: ok
(hdc) 4GB
(hdb) Drive Empty
DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
ne0: PHY 0180:bb10, state 7869, LPA 45e1,0007
ne0: starting PHY reset (260)
TMP101: not detected
sys.autoshadow unset, automatically shadowing
>date
Fri Mar 10 01:38:24 2006
>date; sleep 22; date
Fri Mar 10 01:38:44 2006
Fri Mar 10 01:39:06 2006
>

See also
settime, setdate.

49

dev
dev — Manipulate and display the ABLE device tree.

Synopsis

50

help
help — Display help on built in commands

Synopsis
help [command]

Options
command inbuilt command name

Description
Without a parameter this command lists the in-built commands understood by the shell. Specifying a command name prints
a brief help message for that command which is typically the same as using the --help option.

Example 9.3. Using the help command

This shows the help command being used to get help on the help command itself, it then shows obtaining help on the sh
command and obtaining the same information with the --help option.

>help
Internal commands are:
sh autoboot sbcd bast-hdlcd pic-wr pic-rd
bast-at2 bast-at dmcfg-rd dmcfg-wr pmu shadow
mii ifconfig set [test console
display file hwinfo wrout version nvclear
nvunset nvsave nvshow nvset uname sum
tasks sleep showhz sysmsg setopt showargs
setargs reset memset meminfo peek poke
modules ls lsfs help echo dumpfile
dump cat cp cd pwd boot
load history vtp5 vtp4 vtp3 vtp2
vtp1 sysspeed settime setdate devls date

Use:
 help <command> to get brief explanation
 <command> --help for command usage (if available)
>help help
Help on help:
Lists available commands, Optional arg gives help on specific command.
Please report bugs to <support@simtec.co.uk>
>help sh
Help on sh:
Usage: sh [OPTION] [FILE]
start a shell.

 -i start an interactive shell
 --help display this help and exit
 --version output version information and exit

Please report bugs to <support@simtec.co.uk>
>sh --help
Usage: sh [OPTION] [FILE]
start a shell.

51

 -i start an interactive shell
 --help display this help and exit
 --version output version information and exit

Please report bugs to <support@simtec.co.uk>
>

The Example 3.2, “Getting help on the uname command” is another example of using the help command.

52

history
history — Lists the commands in the command line history.

Synopsis
history

Description
Lists the commands in the command line history. Each command is numbered in the list. The number of commands kept in
the history is set with the shell.hist non-volatile variable.

Commands are accessed in the history by using the up and down arrows. The command may be edited in place and then
executed as with any other command line as if typed in.

Example 9.4. Using the history command

>history
 1 history
 2 meminfo
 3 tasks
 4 hwinfo -a
 5 hwinfo
>

53

hwinfo
hwinfo — Print hardware information.

Synopsis
hwinfo [[-a] | [-u]] [--help] [--version]

Options
-a displays all the hardware info fields.

-u displays the systems unique ID

--help display short helptext and exit

--version display commands version and exit

Description
Show hardware specific information, typically the machines unique identification bytes.

Example 9.5. Using the hwinfo command

>hwinfo
 Unique ID:0x00:0x01:0x3d:0x00:0x01:0x6a
>

54

meminfo
meminfo — Shows memory information.

Synopsis
meminfo

Description
Shows the memory availabe within the system and the ABLE current memory usage.

Example 9.6. Using the meminfo command

>meminfo
Memory regions:
 30000000, size 04000000 (65536 KiB)
 34000000, size 04000000 (65536 KiB)

Memory pool: 382/3752 KiB, 18 free blocks
>

55

modules
modules — List ABLE modules

Synopsis
modules

Description
Lists all the ABLE modules within a particular build. ABLE is constructed using a small section of “head” or initialisation
code and a number of modules. Each module provides a specific piece of functionality to the system e.g. the cmd_time
module provides the time command to the shell.

The modules are loaded according to their priority, the lowest (most important) priority first rising to the highest (lowest
importance). This priority system ensures a fixed load order so facilities and drivers are available in the appropriate sequence.

Example 9.7. Using the modules command

>modules
current modules:
 cmd_time, priority=0x100
 cmd_devls, priority=0x100
 cmd_setdate, priority=0x100
 ax88796, priority=0x50000
 dm9000, priority=0x50000
 simtec_ide, priority=0x50000
 bbd2016a_ide, priority=0x50000
 anubis_bus, priority=0x65000
 bast_bus, priority=0x65000
 osiris_bus, priority=0x65000
 smdk2440_bus, priority=0x65000
 vr1000_bus, priority=0x65000
 samsung_s3c2410x, priority=0x65100
 dev_24cxx, priority=0x65801
 nvram_init, priority=0x65880
 s3c2410x_timer, priority=0x71000
 hztimer, priority=0xa0000
 cmd_sysspeed, priority=0xa6000
 romfs, priority=0xa7000
 serial_u16550, priority=0xa8800
 serial_s3c2410, priority=0xa8800
 serial_console, priority=0xa8a00
 allrd_console, priority=0xa8a00
 allwr_console, priority=0xa8a00
 null_console, priority=0xa8a00
 multi_console, priority=0xa8a00
 usbkbd, priority=0xa8a00
 ps2kbd_serpic, priority=0xa8a00
 s3cvid_console, priority=0xa8a00
 sm501vid_console, priority=0xa8a00
 console, priority=0xa8a01
 draminit, priority=0xa8a05
 drv_pmu_bast, priority=0xa9100
 usb_core, priority=0xa9800
 usb_ohci, priority=0xa9802
 announce, priority=0xa9fff

56

 confs, priority=0xaa001
 iso9660fs, priority=0xaa002
 ffs, priority=0xaa002
 ext2fs, priority=0xaa002
 jffs2, priority=0xaa002
 tftpboot, priority=0xaa002
 char_code, priority=0xaa003
 ide, priority=0xb0000
 ide_disc_drv, priority=0xb0001
 ide_cdrom_drv, priority=0xb0001
 rom, priority=0xb1000
 net_dm9000, priority=0xd1001
 netudp, priority=0xd1002
 netipv4, priority=0xd1002
 netif, priority=0xd1002
 net_isa_ne2k, priority=0xd1002
 net_ax88796, priority=0xd1002
 net_test1, priority=0xd1003
 cyclone_code, priority=0xd1101
 sh_osloader, priority=0xe0000
 app1_osloader, priority=0xe0000
 lzw_osloader, priority=0xe0000
 netbsd_osloader, priority=0xe0000
 linux_osloader, priority=0xe0000
 srec_osloader, priority=0xe0000
 zlib_osloader, priority=0xe0000
 tmp101, priority=0xe8000
 cmdload, priority=0xf0000
 cmdboot, priority=0xf0000
 cmd_cd, priority=0xf0000
 cmd_cp, priority=0xf0000
 cmd_cat, priority=0xf0000
 cmd_dump, priority=0xf0000
 cmd_echo, priority=0xf0000
 cmd_help, priority=0xf0000
 cmd_lsfs, priority=0xf0000
 cmd_ls, priority=0xf0000
 cmd_modules, priority=0xf0000
 cmd_poke, priority=0xf0000
 cmd_meminfo, priority=0xf0000
 cmd_memset, priority=0xf0000
 cmd_reset, priority=0xf0000
 cmd_sleep, priority=0xf0000
 cmd_wrout, priority=0xf0000
 cmd_hwinfo, priority=0xf0000
 cmd_file, priority=0xf0000
 cmd_display, priority=0xf0000
 cmd_cons, priority=0xf0000
 cmd_test, priority=0xf0000
 cmd_set, priority=0xf0000
 cmd_ifconfig, priority=0xf0000
 cmd_mii, priority=0xf0000
 cmd_autoboot, priority=0xf0001
 shell, priority=0xf0002
>

57

mutexes
mutexes — Display the internal mutual exclusion states for ABLE.

Synopsis

58

passwd
passwd — Alter ABLE interactive shell passwd

Synopsis
passwd

Description
The interactive shell can be proteced from unauthorised access by a password. The password up to eight characters in length
and must only use characters typable from the ABLE console.

The password is hashed with a salt value and stored in a non-volatile variable console.password. When the system is booted,
immediately after thr automatic boot processing is completed, the password will be prompted for. If an incorrect password
is entered three times the system will be reset.

This command prompts the user for a password, places a suitably hashed value in the console.password and prompts the user
to save the new password with nvsave if they wish to make the password permenant.

Example 9.8. Using the passwd command

>passwd
Enter new password:
Retype new password:
Password changed, please run 'nvsave' to ensure the change persists.
>

See also
nvsave.

59

pmu
pmu — Power management control

Synopsis
pmu [-o] [-r] [-w {state}] [-n {state}] [-s] [-a] [-l]

Options
-o turns power off

-r hard reset

-w set global wake on state to on with 1 or off with 0

-n set wake on LAN state to on with 1 or off with 0

-s set PMU value

-a perform PMU action

-l list current PMU values

Description
Used to manipulate the Power Management Unit of a platform.

60

reset
reset — Reset machine

Synopsis
reset

Description
This command may be used to reset the machine, the exact behaviour is system dependant.

On the EB7500ATX and EB2410ITX boards this command will communicate with the power management device to perform
a physical system reset while the EB110ATX will perform a simple soft reset.

61

sbcd
sbcd — Manipulates the board configuration data.

Synopsis
sbcd [-l, --load {file}] [-s, --show] [-d, --drivers] [-h, --help]

Options
-l, --load Load Simtec Electronics board configuration data for passing to an OS.

-s, --show Show Simtec Electronics board configuration data

-d, --drivers List Simtec Electronics board configuration data drivers

-h, --help display short help message

Description
Simtec board configuration data control command, allows manipulation of the board configuration data on supported ma-
chines.

62

setdate
setdate — Sets the date in the real time clock

Synopsis
setdate {day} {month} {year}

Options
day day of month to set

month month to set

year year to set, two digit values will have 2000 added

Description
This command allows the date to be set in the real time clock. The real time clock is typically battery backed and the settings
are retained across reboots.

Example 9.9. Using the setdate command to set the real time clock

>setdate 1 2 3
setdate: assuming year value is offset from 2000
>date
Sat Feb 01 17:59:52 2003
>reset
selected all-wr for console write
selected all-rd for console read
DRAM: 128 Mb (134217728 bytes)
BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
ABLE 2.20 Copyright 2001-2005,2006 Simtec Electronics
hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
hdc: FUJITSU MHF2043AT: ATA PIO mode 4
hdc:Diagnosing disc drive: ok
(hdc) 4GB
(hdb) Drive Empty
DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
ne0: PHY 0180:bb10, state 7869, LPA 45e1,0007
ne0: starting PHY reset (264)
TMP101: not detected
sys.autoshadow unset, automatically shadowing
>date
Sat Feb 01 18:00:04 2003
>setdate 10 3 2006
>date
Fri Mar 10 18:00:33 2006
>

See also
settime, date.

63

setopt
setopt — Sets device options.

Synopsis
setopt {device} {options}

Options
device device on which to set options.

options options to apply to device

Description
This command allows device options to be altered, typically baud rates and data formats on character devices.

The device which options are applied to is typically a serial port. The console command can be used to obtain a list of
appropriate devices with the -d option.

The options are in the form:

baud,data-format

The baud rate is a simple numeric value e.g. 115200 or 19200. The data format is specified as three single character values.
The first denotes the number of data bits, typically eight or seven. The second sets the parity type one of none (n), odd (o)
or even (e). The third is the number of stop bits either one or two.

The initial port options are detailed in Section 5.2, “Setting parameters on serial drivers”.

Example 9.10. Using the setopt command to alter serial port options.

This example shows the setopt command altering the baud rate of the second s3c2410 serial port to 19600.

>console -d
(-w-a) s3c2410x-video
(r---) usbkbd
(rw--) multi
(rw--) null
(-w--) all-wr
(r---) all-rd
(rw--) serial
(rw--) (s3c2410_serial2)
(rw--) (s3c2410_serial1)
(rw--) (s3c2410_serial0)
(rw--) (u16550_serial1)
(rw--) (u16550_serial0)
>setopt (s3c2410_serial1) 19600,8n1
>

64

settime
settime — Sets the real time clock

Synopsis
settime {hour} {minute} {second}

Options
hour hour to set using 24 hour clock

minute minute to set

second second to set

Description
This command allows the time to be set in the real time clock. The real time clock is typically battery backed and the settings
are retained across reboots.

Example 9.11. Using the settime command to set the real time clock

This example shows the time being altered, the system reset and the retention and correct update of the time across the reset.

>date
Wed Mar 22 16:37:11 2006
>settime 1 2 3
>date
Wed Mar 22 01:02:03 2006
>reset
selected all-wr for console write
selected all-rd for console read
DRAM: 128 Mb (134217728 bytes)
BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
ABLE 2.21r1 Copyright 2001-2005,2006 Simtec Electronics
hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
hdc: FUJITSU MHF2043AT: ATA PIO mode 4
hdc:Diagnosing disc drive: ok
(hdc) 4GB
(hdb) Drive Empty
DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
ne0: PHY 0180:bb10, state 7869, LPA 45e1,0007
ne0: starting PHY reset (262)
TMP101: not detected
sys.autoshadow unset, automatically shadowing
>date
Wed Mar 22 01:02:26 2006
>settime 16 40 0
>date
Wed Mar 22 16:40:00 2006
>

See also
setdate, date.

65

shadow
shadow — Moves ABLE into RAM

Synopsis
shadow

Description
Moves ABLE into RAM. This allows systems where ABLE executes directly from flash memory to move ABLE into RAM
where it will execute faster, this is also required if the underlying flash memory is to be reprogrammed e.g. when upgrading
ABLE

This command is largely deprecated and is generally now only used on the EB7500ATX. Most platforms are running ABLE
shadowed as most current designs do not have directly mapped memory to execute from.

66

showhz
showhz — Shows how long a system has been running

Synopsis
showhz

Description
ABLE maintains an internal timer which increments 100 times a second. The timer is started from 0 and hence gives an
indication of the amount of time since the last reset.

This command displays the value of the system timer in hexadecimal, the value is also converted into seconds for conve-
nience.

Example 9.12. Using the showhz command

>showhz; sleep 10; showhz
HZ: be36 (486 seconds)
HZ: c227 (497 seconds)
>showhz
HZ: 1f6b9 (1286 seconds)
>

67

sysmsg
sysmsg — Show system messages.

Synopsis
sysmsg

Description
Displays the system message history buffer. This buffer contains all the messages ABLE has produced. Not all of these
messages may have been output to the console, the console.level variable and the console command control which messages
are displayed and which are simply placed in the message buffer.

Example 9.13. Displaying the system messages after a default boot

The system message log contains more information than will normally be output to the console, these messages can be useful
for discovering problems.

selected all-wr for console write
selected all-rd for console read
DRAM: 128 Mb (134217728 bytes)
BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
ABLE 2.20 Copyright 2001-2005,2006 Simtec Electronics
hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
hdc: FUJITSU MHF2043AT: ATA PIO mode 4
hdc:Diagnosing disc drive: ok
(hdc) 4GB
(hd0) on ((hdc1):ext2)
(hdb) Drive Empty
DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
TMP101: not detected
sys.autoshadow unset, automatically shadowing
>sysmsg
1: dcc: status 20000000, read 80f403c8
2: low level serial 00000000
3: log level is now 1
4: ABLE: 2.20 (s3c2410x) (vince@gerald) Thu Feb 16 14:47:40 GMT 2006
5: Processor: Samsung S3C2410A (arm920)
6: System: Machine bast/s3c2410x, Linux id 0x014b
7: S3C2410X RTC: 13:49:57, 03/01/2003
8: (s3c2410x) character device
9: NAND: configured boot slot is 0 (card slot)
10: NAND device 0: Samsung K9F1208u0a [131072,32,512]
11: (flash0) on (nand0p1)
12: (flash1) on ((nand0p2):jffs2)
13: EEPROM: 24cXX, 1024 bytes, single byte addressed, UID unset
14: (nvram0) on (24cxx0p1)
15: sys.speed is unset, Setting CPU Speed to 266MHz
16: (u16550_serial0) aliased to (char0)
17: (u16550_serial1) aliased to (char1)
18: s3c2410_serial: 115200, 8n1, 16 byte fifo on, u clock
19: (s3c2410_serial0) aliased to (char2)
20: s3c2410_serial: 115200, 8n1, 16 byte fifo on, u clock
21: (s3c2410_serial1) aliased to (char3)
22: s3c2410_serial: 115200, 8n1, 16 byte fifo on, u clock

68

23: (s3c2410_serial2) aliased to (char4)
24: all-wr: adding console 'serial'
25: all-wr: adding console 'null'
26: no configuration, defaulting to VGA
27: Chrontel CH7006 detected
28: screen mode is 640x480, ?Hz, ?Hz HSync
29: video: video size 300K
30: s3c-fb: VClk=22166666 HZ
31: configuring ch7006: vga
32: all-wr: adding console 's3c2410x-video'
33: failed to find SM501 device
34: no console level set, setting 6
35: selected all-wr for console write
36: selected all-rd for console read
37: DRAM: 128 Mb (134217728 bytes)
38: BAST: PMU version 1.02, ID 00:01:3d:00:01:6a
39: usb.enable not set, setting 1
40: usb.hubdepth not set, setting 2
41: new hc e036d1b4
42: starting hc e036d1b4
43: ABLE 2.20 Copyright 2001-2005,2006 Simtec Electronics
44: hdb: ATAPI CDROM: TOSHIBA CD-ROM XM-7002B PIO mode 4
45: hdc: FUJITSU MHF2043AT: ATA PIO mode 4
46: hdc:Diagnosing disc drive: ok
47: (hdc) 4GB
48: (hd0) on ((hdc1):ext2)
49: (hdb) Drive Empty
50: DM9000: dm0: r1, 00:01:3d:00:01:6a int phy, link ok, 100Mbit full duplex
51: NE2000: ne0: ISA/Generic, 00:01:3d:00:01:6b
52: ne0: PHY 0180:bb10, state 7849, LPA 0000,0004
53: ne0: starting PHY reset (238)
54: TMP101: not detected
55: sys.autoshadow unset, automatically shadowing
56: >ne0: bringing PHY up (489)
57: sysmsg
>

69

sysspeed
sysspeed — Sets the system clockspeed

Synopsis
sysspeed [speed]

Options
speed system speed in MHz, a integer number is required and the MHz units should be omitted.

Description
Displays possible speeds with no parameters or sets the system speed in MHz.

Example 9.14. Using the syspeed command on a EB2410ITX

This shows the sysspeed command being used to list possible values with the * indicating the current selected speed. The
speed is changed to 226 MHz from 266MHz and redisplayed.

>sysspeed
 34 MHz 45 MHz 51 MHz 48 MHz 56 MHz
 68 MHz 79 MHz 85 MHz 90 MHz 101 MHz
 113 MHz 118 MHz 124 MHz 135 MHz 147 MHz
 152 MHz 158 MHz 170 MHz 180 MHz 186 MHz
 192 MHz 203 MHz 210 MHz 226 MHz * 266 MHz
 268 MHz 270 MHz
>sysspeed 226
Setting CPU Speed to 226MHz
CPU Speed successfully changed
>sysspeed
 34 MHz 45 MHz 51 MHz 48 MHz 56 MHz
 68 MHz 79 MHz 85 MHz 90 MHz 101 MHz
 113 MHz 118 MHz 124 MHz 135 MHz 147 MHz
 152 MHz 158 MHz 170 MHz 180 MHz 186 MHz
 192 MHz 203 MHz 210 MHz * 226 MHz 266 MHz
 268 MHz 270 MHz
>

70

tasks
tasks — Displays task threads currently running on system.

Synopsis
tasks

Description
ABLE runs several threads to control various hardware devices. This command displays the currently running threads.

The information is presented in a tabular form. The columns are:

Task name and address
Priority of execution
Current state
Register context block
Time thread was last scheduled

The scheduling for the threads is a simple “round robin” method which suffices for ABLE requirements.

Example 9.15. Using the tasks command

This example shows the tasks command when run on a EB2410ITX. The showhz command is used to show the current
system time which is the same as used in the “Last Run” column. It shows the Ethernet PHY control task, the USB host
controller driver, the reaper task to clean up after other tasks, the init task which starts the system and the main task which
typically runs the autoboot or interactive shell.

>showhz ; tasks ; showhz
HZ: 0xf519 (62745) (100/sec => 627 seconds)
 Task Prio State Regs Last Run Sleeping Wakeup Preempts
--------------------- ---- ------- -------- -------- -------- -------- --------
 tasks e00898c4 0004 r-----c e0089920 0000f51a 00000000 00000000 00000002
 usb-hub e008b2a4 0001 ------- e008b300 0000008b e008c288 -0062747 00000000
 usb-hub e0087e54 0001 ------- e0087eb0 0000f51c e0012178 00000001 00000000
 IP dev dm1 e0084e14 0001 ------- e0084e70 0000f51c e0084dd4 00000001 00000000
 IP dev dm0 e0082c24 0001 ------- e0082c80 0000f51d e0082be4 00000001 00000000
 usb-hc e0080ae4 0001 ------- e0080b40 0000f51e e0012178 00000001 00000000
 reaper e007c6f4 0000 ------- e007c750 0000f519 e0012164 -0062751 00000000
 IP Stack e0079b54 0003 ------- e0079bb0 0000f51a e0075704 00000005 00000000
 idle e0075514 0008 r------ e0075570 0000691b 00000000 00000000 00000226
 init e00757c4 0004 ------- e0075820 0000f519 e008988c -0062753 00062365
HZ: 0xf521 (62753) (100/sec => 627 seconds)
>

71

uname
uname — Print system identification

Synopsis
uname [-a, --all] [-s, --kernel-name] [-n, --nodename] [-r, --kernel-release] [-v, --kernel-version] [-m, --machine] [-o, --
operating-system] [--help] [--version]

Options
-a, --all print all information, in the following order:

-s, --kernel-name print the kernel name

-n, --nodename print the network node hostname

-r, --kernel-release print the kernel release

-v, --kernel-version print the kernel version

-m, --machine print the machine hardware name

-o, --operating-system print the operating system

--help display this help and exit

--version output version information and exit

Description
Print system identification, this command is practically identical in use to equivalent commands under UNIX®.

The uname command prints information about the machine and operating system it is run on. If no options are given the
-s option is assumed.

The information printed is always in the order kernel-name, nodename, kernel-release, machine and oper-
ating system. The values displayed may contain spaces or punctuation.

Example 9.16. Using the uname command on the EB2410ITX

>uname
ABLE
>uname -a
ABLE unknown 2.53 #18035 Mon Jan 26 12:22:21 2009 s3c2410 ABLE
>uname -r
2.53
>uname -v
#18035 Mon Jan 26 12:22:21 2009
>

See also
version(1).

72

version
version — Display ABLE shell version

Synopsis
version

Description
Displays the version number and build information of the currently executing instance of ABLE. This is the same text which
is output during the boot process.

The information provided by this command is also available from the uname command.

Example 9.17. Using the version command

>version
ABLE 2.53 (18035) Copyright 2001-2008 Simtec Electronics
>

See also
uname(1).

73

Chapter 10. Shell Commands
These are the commands which can be used to perform operations related to the ABLE shell.

74

echo
echo — Output some text to standard output

Synopsis
echo [-n] [-e] {text}

Options
-n do not output the trailing newline

-e enable interpretation of the backslash-escaped characters

text text to display

Description
This command is used to display text on the output console. One use is in scripts to indicate what actions are being performed.

If the -e option is used, the following sequences are recognised:

Table 10.1. Escaped echo characters

Character Result

\0NNN the character whose ASCII code is NNN (octal)

\\ backslash

\a alert (BEL)

\b backspace

\c suppress trailing newline (same as the -n option)

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

Example 10.1. Using the echo command

>echo pepper;echo fish
pepper
fish
>echo -n pepper;echo fish
pepperfish
>

75

exit
exit — Exit ABLE shell

Synopsis
exit [status]

Options
status integer exit status.

Description
Cause the shell to exit with a specified status. If the status code is omitted the exit status is that of the last command executed.

If the initial shell is exited any additional modules with lower priority will be executed, ultimately if no further modules are
available the system will halt.

76

read
read — Reads a line of input into shell variables

Synopsis
read [-d {delimiter}] [-e] [-n {number}] [-p {prompt}] [-s] [-t {timeout}] [-u {file}] {variable...}

Options
-d delimiter The delimiter is a single character which is used to terminate the input line the default if this option is

not given is newline.

-e If the input is not coming from a file (-u isn't used) the input will be read with a line editor. This line
editor is the same as the main shell but with no history.

-n number The command exits after reading the specified number of characters.

-p prompt The prompt will be output before starting to accept input. The prompt is only displayed if -u is not
being used.

-s If the -u is not being used characters entered are usually displayed, this switch inhibits this display.
This can be used for password entry.

-t timeout this stops reading input after the timeout and exits with a non zero exit code. The option has no effect
if the -u option is being used.

-u fd Instead of reading input from the console read from the given file descriptor.

variable The names of the variables to place the read text into. If no names are supplied the input is put into
the REPLY variable.

Description
One line is read from the console, or from the file descriptor supplied as an argument to the -u option, and the first word is
assigned to the first variable name, the second word to the second name, and so on, with leftover words and their intervening
separators assigned to the last name. If there are fewer words read from the input stream than names, the remaining names
are assigned empty values.

The characters in IFS are used to split the line into words unless the delimiter switch is used.

The return code is zero, unless end-of-file is encountered, read times out, or an invalid file is supplied as the argument to -u.

Example 10.2. Using the read command

This example shows the use to the read command in several ways. Firstly reading simple text without a prompt and then
with a long prompt.

>read
some text
>echo $REPLY
some text
>read -p "a long prompt $"
a long prompt $some text with a long prompt
>echo $REPLY
some text with a long prompt
>

77

This shows reading values into a specified variable and how the REPLY variable is unaffected.

>REPLY="no reply"
>read -p $ VARIABLE
$some text with a prompt in VARIABLE
>echo $VARIABLE
some text with a prompt in VARIABLE
>echo $REPLY
no reply
>

This shows the use of the silent switch to suppress echoing of output.

>read -s VARIABLE

>echo $VARIABLE
some text in VARIABLE with silent enabled
>

This shows the use of the delimiter and timeout options to read a preset number of characters and perform a read within
a set amount of time.

>read -n 5 VARIABLE
12345>echo $VARIABLE
12345
>read -d 9 VARIABLE
this text continues until a 9>echo $VARIABLE
this text continues until a
>echo $?
0
>read -t 3 VARIABLE
>echo $?
1
>echo $VARIABLE
this text continues until a
>

78

set
set — Set or clear shell options and positional parameters

Synopsis
set {filename}

Options
filename File to display

Description

See also
dumpfile(1).

79

sh
sh — Start a new ABLE shell

Synopsis
sh [-x] [-e] [-v] [-i] [--help] [--version]

Options
-x Display the command to be executed with its variables expanded.

-e Exit immediately if a command fails

-v Display lines of input as they are read.

-i Start an interactive shell

--help Display short helptext and exit

--version Display commands version and exit

Description
This command starts a new ABLE shell, for full information on using the shell refer to Chapter 3, Command Line Interface.
The newly created shell environment is separate from the invoking shell, variables from the parent are not available and
upon exit any variables set within the shell are lost.

Example 10.3. Subshell variable scope

This example shows setting variables in the outer shell and in the subshell and their scope.

>echo ${FOO}

>echo ${BAR}

>FOO="hello and goodbye"
>BAR="goodbye and hello"
>sh
>echo ${FOO}

>echo ${BAR}

>BAR="something else"
>FOO="entirely"
>echo ${FOO} ${BAR}
something else entirely
>exit
>echo ${FOO}
hello and goodbye
>echo ${BAR}
goodbye and hello
>

The -x, -e and -v switches control the shells overall behaviour, these variables are accessed from the shell using the special
variable $_.

80

sleep
sleep — Delay for a specified amount of time

Synopsis
sleep {time}

Options
time Time in seconds to delay

Description
This command is used to pause execution for a given length of time. The time given must be a simple integer number of
seconds.

Example 10.4. Using the sleep command to delay execution

>date ; sleep 15 ; date ; sleep 9 ; date ; sleep 292 ; date
Fri Jan 05 04:25:51 2003
Fri Jan 05 04:26:06 2003
Fri Jan 05 04:26:15 2003
Fri Jan 05 04:31:07 2003
>

81

test
test — Performs test operations

Synopsis
test [--help] [--version] expression

Options
--help Display this help and exit

--version Output version information and exit

expression Expression to evaluate.

Description
Exit with the status determined by the expression (shown in Table 10.2, “Possible test expressions”).

An omitted expression defaults to false. Otherwise, the expression is evaluated to a true or false result and sets exit status
accordingly.

An alias is provided so this command can be called as [this gives a more familiar way to use this command.

For the tests which check for a file having UNIX® read or write permissions ABLE assumes the root (UID 0 and GID 0)
superuser is being used.

Table 10.2. Possible test expressions

Test Result is true if

(expression) expression is true

! expression expression is false

expression1 -a expression2 both expression1 and expression2 are true

expression1 -o expression2 either expression1 or expression2 is true

-n string the length of string is nonzero

string equivalent to -n string

-z string the length of string is zero

string1 = string2 the strings are equal

string1 != string2 the strings are not equal

integer1 -eq integer2 integer1 is equal to integer2

integer1 -ge integer2 integer1 is greater than or equal to integer2

integer1 -gt integer2 integer1 is greater than integer2

integer1 -le integer2 integer1 is less than or equal to integer2

integer1 -lt integer2 integer1 is less than integer2

integer1 -ne integer2 integer1 is not equal to integer2

file1 -ef file2 file1 and file2 have the same device and inode numbers

file1 -nt file2 file1 is newer (modification date) than file2

file1 -ot file2 file1 is older than file2

-b file file exists and is block special

82

Test Result is true if

-c file file exists and is character special

-d file file exists and is a directory

-e file file exists

-f file file exists and is a regular file

-g file file exists and is set-group-ID

-G file file exists and is owned by the effective group ID

-h file file exists and is a symbolic link (same as -L)

-k file file exists and has its sticky bit set

-L file file exists and is a symbolic link (same as -h)

-O file file exists and is owned by the effective user ID

-p file file exists and is a named pipe

-r file file exists and read permission is granted

-s file file exists and has a size greater than zero

-S file file exists and is a socket

-t fd file descriptor fd is opened on a terminal

-u file file exists and its set-user-ID bit is set

-w file file exists and write permission is granted

-x file file exists and execute (or search) permission is granted

Except for -h and -L, all file-related tests dereference symbolic links. Beware that parentheses need to be escaped (e.g.,
by back-slashes) for shells.

Example 10.5. Performing assorted tests

This example shows the use of the test command with various expressions. Each test uses “&& echo true” to make it clear
when the expression returns a true (zero) exit status.

>test ! (1 -ge 0) && echo true
>echo $?
1
>test (1 -ge 0) && echo true
true
>echo $?
0
>test ! (1 -ge 0) && echo true
>test ! (0 -ge 1) && echo true
true
>test -f (hd0)/etc/services && echo true
true
>test -f (hd0)/etc/services -a (1 -ge 0) && echo true
true
>test -f (hd0)/etc/services -a (1 -ge 2) && echo true
>test -f (hd0)/etc/services -o (1 -ge 2) && echo true
true
>test -n "foo" && echo true
true
>test -n "" && echo true
>test -z "foo" && echo true
>test "foo" = "foo" && echo true
true
>test "foo" = "bar" && echo true
>test "foo" != "bar" && echo true

83

true
>test 1 -eq 2 && echo true
>test 1 -eq 1 && echo true
true
>test 1 -ge 0 && echo true
true
>test 1 -ge 1 && echo true
true
>test 1 -ge 2 && echo true
>test 1 -gt 1 && echo true
>test 1 -le 2 && echo true
true
>test 1 -le 1 && echo true
true
>test 1 -le 0 && echo true
>test 1 -lt 1 && echo true
>test 1 -ne 1 && echo true
>test 1 -ne 0 && echo true
true
>test -f (hd0)/etc/services
>test -f (hd0)/etc/services && echo true
true
>test -d (hd0)/etc/services && echo true
>test -d (hd0)/etc && echo true
true
>test -b (hd0)/etc/services && echo true
>test -b (hd0)/dev/hda && echo true
true
>test -c (hd0)/dev/hda && echo true
test -c (hd0)/dev/tty && echo true
true
>

84

85

Chapter 11. Network operations
These are the commands for controlling the network interfaces.

86

ifconfig
ifconfig — Network device configuration and selection

Synopsis
ifconfig [-a] [-s] [--help] [--version] {interface} [address] [netmask{address}] [gateway{address}]
[tftpserver{address}] [[up] | [down]]

Options
-a Displays information about all available interfaces

-s Changes output to short format

--help Display commands syntax then exits

--version Displays commands version then exits

address Address to assign to interface e.g. 192.168.7.101

interface Name e.g. ne0 or de0 unless -a is used

netmask Netmask to assign to interface e.g. 255.255.255.0

gateway Default gateway to assign to interface e.g. 192.168.7.1

tftpserver TFTP server address to use e.g. 192.168.7.10

up Selects the interface as operational and the default.

down Disables the interface.

Description
This command allows network interfaces to be manually configured and different interfaces to be selected.

Normally ABLE will use DHCP on the default interface when retrieving files over tftp, the default interface may be changed
with this command by using just the up flag (see Example 11.1, “Using the ifconfig command to select default interface”)

By using the other parameters the interface may be configured with IPv4 addresses. Configuring in this way removes the
requirement of using a DHCP server.

Example 11.1. Using the ifconfig command to select default interface

>ifconfig -a
dm0 HWaddr 00:01:3d:20:20:20

ne0 HWaddr 00:01:3d:ff:ff:00

>ifconfig dm0 up
looking for net.dm0
net.dm0:selected as boot interface
>ifconfig ne0 up
looking for net.ne0
net.ne0:selected as boot interface
>

87

Example 11.2. Using the ifconfig command to configure a fixed address

This example shows the first davicom interface (dm0) being configured with the IP protocol address 192.168.7.101 with a
netmast of 255.255.255.0 and to use the tftpserver 192.168.7.10 no default gateway has been specified.

>ifconfig dm0 192.168.7.101 netmask 255.255.255.0 tftpserver 192.168.7.10 up
looking for net.dm0
net.dm0:selected as boot interface
>

88

dhclient
dhclient — Automatically configure a network interface using DHCP.

Synopsis
dhclient [-k] {interface}

Options
-l Terminate an extant dhclient instead of starting a new one. Releases the lease.

interface The interface to start or stop DHCP on.

Description
ABLE is capable of using the Dynamic Host Configuration Protocol (DHCP) to provide IP, DNS and boot-server configu-
ration information. ABLE can use DHCP on any (or all) of its interfaces on multi-ethernet-device boards.

Example 11.3. Using the dhclient command

This shows the configuration of the first Davicom ethernet device on a board.

>dhclient dm0
DHCP: Attempting network autoconfiguration for dm0.
DHCP: Automatic network configuration for dm0 successful.
DHCP: Address 192.168.0.100
DHCP: Netmask 255.255.255.0
DHCP: Gateway 192.168.0.1
DHCP: Server 192.168.0.5
DHCP: Next Server 192.168.0.3
DHCP: DNS Server 192.168.0.2
>

89

host
host — Look up hostnames and optionally set DNS server values.

Synopsis
host [-s, --set resolver] [--help] [--version] name...

Options
-s, --set set the resolver to use. The default is the one provided by the DHCP response.

--help display short helptext and exit

--version display commands version and exit

name The host name to resolve.

Description
Perform a DNS lookup.

Example 11.4. Using the host command to resolve an address.

>host www.simtec.co.uk
www.simtec.co.uk is at 217.147.94.109
>

See also
dhclient.

90

mii
mii — MII phy control

Synopsis
mii {-d, --dev device} [-p, --phy address] [-s, --show] [-r, --read address] [-w, --write address value] [-h, --help]

Options
-d, --dev Performs operation on the specified device

-p, --phy Specify phy address on device

-s, --show Show all registers for phy

-r, --read Read mii register

-w, --write Write mii register

-h, --help Display short help message

Description
Gives control of MII phy parameters on supported network controllers.

Example 11.5. Using the mii command to show all the registers in a phy

>mii -d ne0 -s
 [00] = 3000 [01] = 7849 [02] = 0180 [03] = bb10
 [04] = 01e1 [05] = 0000 [06] = 0004 [07] = 2001
 [08] = 0000 [09] = 0000 [10] = 0000 [11] = 0000
 [12] = 0000 [13] = 0000 [14] = 0000 [15] = 0000
 [16] = 0000 [17] = 0283 [18] = 11dd [19] = 0000
 [20] = 0000 [21] = 5256 [22] = 07ec [23] = 4001
 [24] = 0800 [25] = 2041 [26] = 07cf [27] = 1c11
 [28] = 0010 [29] = 1000 [30] = 0000 [31] = 0001
>

91

nc
nc — Read and display data from a network socket

Synopsis
nc {address} {port}

Options
address The IP address to connect to.

port The port on the remote server to connect to.

92

93

Chapter 12. File Navigation
These are the file commands are available from the shell command line of ABLE from version 2.20 and later.

94

cd
cd — Change present working directory

Synopsis
cd [directory]

Options
directory Directory to set as present working directory.

Description
This changes the present working directory of the shell to the specified directory, the change may be relative to the current
directory or an absolute path.

Example 12.1. Using the cd and ls commands to navigate a filesystem

This shows using the cd command to change into the boot directory of the first hard drive and then perform a relative move
into the var directory.

>cd (hd0)/boot
>ls
config-2.6.13-simtec1
vmlinuz-2.6.13-simtec1
>cd ../var
>ls
lib
cache
backups
local
lock
log
run
spool
tmp
opt
mail
>

95

dumpfile
ls — List files in a directory.

Synopsis
ls [-l] [-a] [directory]

Options
-l Long listing giving more information.

-a Listing includes all files.

directory Directory to list.

Description
This command produces a list of all the files in a given directory, if no directory is specified then the present working directory
is shown. Example 12.1, “Using the cd and ls commands to navigate a filesystem” shows the listing of the PWD.

Listing the “root” directory (ls /) lists all the available filesystems.

Example 12.2. Using the ls command

This shows a simple directory listing of the first hard disc partition with a filesystem.

>ls (hd0)
lost+found
etc
media
var
usr
bin
boot
dev
home
lib
mnt
proc
root
sbin
tmp
sys
srv
opt
>

This shows a detailed directory listing of the first hard disc partition with a filesystem.

>ls -l -a (hd0)
drwxr-xr-x 22 0 0 4096 .
drwxr-xr-x 22 0 0 4096 ..
drwxr-xr-x 2 0 0 49152 lost+found
drwxr-xr-x 73 0 0 4096 etc
drwxr-xr-x 2 0 0 4096 media

96

drwxr-xr-x 13 0 0 4096 var
drwxr-xr-x 12 0 0 4096 usr
drwxr-xr-x 2 0 0 4096 bin
drwxr-xr-x 2 0 0 4096 boot
drwxr-xr-x 7 0 0 24576 dev
drwxrwxr-x 5 0 50 4096 home
drwxr-xr-x 9 0 0 4096 lib
drwxr-xr-x 2 0 0 4096 mnt
drwxr-xr-x 2 0 0 4096 proc
drwxr-xr-x 5 0 0 4096 root
drwxr-xr-x 2 0 0 4096 sbin
drwxrwxrwx 4 0 0 4096 tmp
drwxr-xr-x 2 0 0 4096 sys
drwxr-xr-x 2 0 0 4096 srv
drwxr-xr-x 2 0 0 4096 opt
>

This shows the PWD being changed and the ls command used to display the directory contents.

>cd (hd0)
>ls -l -a
drwxr-xr-x 22 0 0 4096 .
drwxr-xr-x 22 0 0 4096 ..
drwxr-xr-x 2 0 0 49152 lost+found
drwxr-xr-x 73 0 0 4096 etc
drwxr-xr-x 2 0 0 4096 media
drwxr-xr-x 13 0 0 4096 var
drwxr-xr-x 12 0 0 4096 usr
drwxr-xr-x 2 0 0 4096 bin
drwxr-xr-x 2 0 0 4096 boot
drwxr-xr-x 7 0 0 24576 dev
drwxrwxr-x 5 0 50 4096 home
drwxr-xr-x 9 0 0 4096 lib
drwxr-xr-x 2 0 0 4096 mnt
drwxr-xr-x 2 0 0 4096 proc
drwxr-xr-x 5 0 0 4096 root
drwxr-xr-x 2 0 0 4096 sbin
drwxrwxrwx 4 0 0 4096 tmp
drwxr-xr-x 2 0 0 4096 sys
drwxr-xr-x 2 0 0 4096 srv
drwxr-xr-x 2 0 0 4096 opt
>

97

pwd
pwd — Show present working directory

Synopsis
pwd

Description
This command can be used to show the present working directory. This information is also available in the PWD shell variable.

Example 12.3. Using the pwd command and PWD variable to show the present working directory

>cd (hd0)/boot
>pwd
(hd0)/boot
>echo $PWD
(hd0)/boot
>cd ../var
>pwd
(hd0)/var
>

98

99

Chapter 13. File manipulation commands
These are the commands to manipulate files and are available from the shell command line of ABLE from version 2.20
and later.

100

cat
cat — Displays contents of a text file

Synopsis
cat {filename}

Options
filename File to display

Description
Use to display the contents of a file. The file will be displayed in ASCII text, non printable characters and escape sequences
may cause various effects. This is usually only an issue if binary files are displayed.

Example 13.1. Using cat command to display files contents

This example shows the display of two files one text and one binary.

>cat (hd0)/etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
>

This shows the display of part of a binary file and the undesirable effects.

>cat (hd0)/bin/ls
fb..p@VaeM`mLXkZ/.([=+$P*.nqBo NU^.......!.,.&.>.AI)04RD"
<8 \ WQ J]:G9$..4 .(..44.4.....oo.o........b..b.... . . .P.U.....bb...Hl
K ;[.T. |.*.P. *.+., I|. < i..
.8. +...` nye... 1.U&. nyy.... ...+ ..a.(2.... c.u., i.0 >. . ..
|....w...4..?.o.....1.p..aP#......T#........e..4..`.e.a.H>.0.U&..nyR.i....i.0...
T.U.o.e.....o.H....o.`.H.h. ..ny<.U&..ny......m.A.0..i...L...t..
.0....$...$.....0...k<....g.H.d.n.T.D..&.`.
..
.l.8.x.T.......o...P..
...
.....P#..nya....P.U&..nyb......b.a..~.a.Uu....u. .x..H.w.
P.. .\.0 ..". 1.+. K.\#.. a...
...". A". 8+". >I". .". AP#. %T#. &X#. o\#. A. . .u . .!. ..!. !. __#+ _+ o+ .
$!. (!. ,!...0!...4!...8!...<!...@!...D!..H!...L!..P!..!...X!...\!...`!...d!.."R
"..S."..T."..U"..V."..X "..Z$"..[("..\,"..]0"..^4".._8"..`<"..a@"..bD"..cH"..d.a

See also
dumpfile(1).

101

cp
cp — Copy a file.

Synopsis
cp {source} {destination}

Options
source File to copy from.

destination File to copy to.

Description
Copy source file to destination.

102

dumpfile
dumpfile — Displays a file in a hexadecimal dump

Synopsis
dumpfile {filename} [-s, --start {offset}] [-l, --length {length}] [-b, --blksize {size}] [-t, --text] [--help]

Options
filename File to dump

-s, --start offset Offset, in bytes, into the file to start the dump

-l, --length length Length of data, in bytes, to dump

-b, --blksize size Block size

-t, --text Dump text only, no hex output

--help Display short helptext and exit

Description
Use to display the contents of a file in a hexadecimal dump. The output will be put through a pager and can be aborted with q.

Care should be taken with the parameters to this command which come after the filename.

Example 13.2. Using the dumpfile command

This example shows the dumpfile command being used in text only mode to show the first 300 bytes of a file.

>dumpfile (hd0)/etc/services -t -l 300
dump: (hd0)/etc/services is 17571 bytes long, dumping 0 to 300
00000000: # Network services, Internet style.#.# Note that it is presently
00000040: the policy of IANA to assign a single well-known.# port number
00000080: for both TCP and UDP; hence, officially ports have two entries.#
000000c0: even if the protocol doesn't support UDP operations..#.# Update
00000100: d from http://www.iana.org/assignments/port-numbers and other.#
>

This shows the file dump of the same file with hex output and starting with a hundred byte offset into the file.

>dumpfile (hd0)/etc/services -s 100
dump: (hd0)/etc/services is 17571 bytes long, dumping 100 to 17571
00000064: 7720656c 2d6c6c65 776f6e6b 20230a6e : le well-known.#
00000074: 74726f70 6d756e20 20726562 20726f66 : port number for
00000084: 68746f62 50435420 646e6120 50445520 : both TCP and UDP
00000094: 6568203b 2c65636e 66666f20 61696369 : ; hence, officia
000000a4: 20796c6c 74726f70 61682073 74206576 : lly ports have t
000000b4: 65206f77 6972746e 230a7365 65766520 : wo entries.# eve
000000c4: 6669206e 65687420 6f727020 6f636f74 : n if the protoco
000000d4: 6f64206c 276e7365 75732074 726f7070 : l doesn't suppor
000000e4: 44552074 706f2050 74617265 736e6f69 : t UDP operations
000000f4: 0a230a2e 70552023 65746164 72662064 : ..#.# Updated fr
00000104: 68206d6f 3a707474 77772f2f 61692e77 : om http://www.ia
00000114: 6f2e616e 612f6772 67697373 6e656d6e : na.org/assignmen

103

00000124: 702f7374 2d74726f 626d756e 20737265 : ts/port-numbers
00000134: 20646e61 6568746f 20230a72 72756f73 : and other.# sour
00000144: 20736563 656b696c 74746820 2f2f3a70 : ces like http://
00000154: 2e777777 65657266 2e647362 2f67726f : www.freebsd.org/
00000164: 2f696763 77737663 632e6265 732f6967 : cgi/cvsweb.cgi/s
00000174: 652f6372 732f6374 69767265 20736563 : rc/etc/services
00000184: 20230a2e 2077654e 74726f70 69772073 : ..# New ports wi
00000194: 62206c6c 64612065 20646564 72206e6f : ll be added on r
--MORE--
>

See also
cat.

104

file
file — Tests each argument in an attempt to classify it.

Synopsis
file [-i, --mime] [--help] [--version] filename...

Options
-i, --mime Causes the file command to output mime type strings rather than the more traditional human readable ones.

--help Display short helptext and exit

--version Display commands version and exit

filename Name of file to checksum

Description
The file command examines a given file and tries to determine the files type. The underlying detection code is the same
as that used by ABLE when determining how to load and execute files, this is useful if the user wishes to check ABLE is
correctly determining a files type. Section 6.6, “How ABLE identifies files.” has more information on the detection method.

Example 13.3. Using the file command to determine filetypes

>file (hd0)/boot/vmlinuz-2.6.13-simtec1
(hd0)/boot/vmlinuz-2.6.13-simtec1: Linux Kernel
>file (tftpboot)test.sh
(tftpboot)test.sh: shell
>file (tftpboot)srec
(tftpboot)srec: Motorola S Record
>file (hd0)/etc/services
(hd0)/etc/services: data
>file (hd0)/bin/ls (hd0)/etc/services (hd0)/boot/vmlinuz-2.6.13-simtec1
(hd0)/bin/ls: elf
(hd0)/etc/services: ASCII text
(hd0)/boot/vmlinuz-2.6.13-simtec1: Linux Kernel
>file -i (hd0)/bin/ls (hd0)/etc/services (hd0)/boot/vmlinuz-2.6.13-simtec1
(hd0)/bin/ls: application/x-executable
(hd0)/etc/services: text/plain
(hd0)/boot/vmlinuz-2.6.13-simtec1: application/octet-stream
>

105

more
more — Page output.

Synopsis

106

sum
sum — Checksum a file

Synopsis
sum {filename}

Options
filename Name of file to checksum

Description
Checksum a file, the value produced is the same as the sum command under UNIX®. This allows for files to be verified
before loading with ABLE.

Example 13.4. Checksumming a file with the sum command

>sum (tftpboot)s3c2410-romwrite-220.bin
..
..
crc = 32182, 417 Kb processed, (tftpboot)s3c2410-romwrite-220.bin
>

107

Chapter 14. Non-volatile settings
These are the commands to manipulate non-volatile memory entries and are available from the shell command line of ABLE
from version 1.55 and later.

108

nvclear
nvclear — Reset non-volatile settings to defaults

Synopsis
nvclear

Description
This command wipes the nvvars stored in the hardware but does not update the values in memory. This allows the in memory
values to be saved with the nvsave command.

Warning

A common mistake when using this command is to assume the nvsave command is required, this will simply result
in the current in memory settings being retained, the additional nvsave command is not required.

109

nvsave
nvsave — Save altered non-volatile settings

Synopsis
nvsave

Description
This command commits any changed non-volatile variables to real storage. Without this command changes will not be
retained across a reset.

110

nvset
nvset — Set non-volatile parameters

Synopsis

nvset {variable} {value}

Options

variable A non-volatile variable name

value Value to set variable to

Description

Sets a non-volatile variable to a given value. The same effect can be achieved by simply setting the shell variable appropri-
ately. The value is usually free form text for general options, for boolean values the values “on” and “off” are used (true/
false and 0/1 may also be used)

Example 14.1. Using the nvset command and shell method to alter a non-volatile variables

>nvshow fb.enable
fb.enable = on
>nvset fb.enable off
>nvshow fb.enable
fb.enable = off
>fb.enable=on
>nvshow fb.enable
fb.enable = on
>fb.enable=false
>nvshow fb.enable
fb.enable = off
>nvset fb.enable true
>nvshow fb.enable
fb.enable = on
>

111

Example 14.2. Using the nvset command

This example shows the setting of three variables, one of each type, and their effects on the variables as shown by nvshow.
It should be noted that to set string values with spaces in them the values must be quoted appropriately.

>nvshow
boot-cmd =
boot-time =
shell-hist = 0
auto-boot = off
auto-shadow = off
cons-write =
cons-read =
>nvset boot-cmd "boot (hd0)/vmlinuz root=/dev/hda1"
>nvset boot-time 1
>nvset auto-boot on
>nvshow
boot-cmd = boot (hd0)/vmlinuz root=/dev/hda1
boot-time = 1
shell-hist = 0
auto-boot = on
auto-shadow = off
cons-write =
cons-read =
>

112

nvshow
nvshow — Show non-volatile parameters

Synopsis
nvshow [variable]

Options
variable non-volatile variable name

Description
This command shows the current settings of the non-volatile variables. If the variable is omitted a complete list is shown,
otherwise only the specified variable is shown. Single non-volatile settings are also available as variables in the shell, because
a full stop is ambiguous within a variable name the required non-volatile setting must be placed within curly braces.

Example 14.3. Using the nvshow command

>nvshow
hist (is unset)
boot.fs (is unset)
boot.auto = off
boot.cmd = (hd0)/boot/vmlinuz-2.6.13-simtec1 root=/dev/hdc1 console=ttySAC0,110
boot.timeout (is unset)
ide.multi-limit (is unset)
usb.hubdepth (is unset)
usb.enable (is unset)
console.level (is unset)
console.write (is unset)
console.read (is unset)
fb.enable = on
fb.output (is unset)
fb.refresh (is unset)
fb.y (is unset)
fb.x (is unset)
sys.autoshadow (is unset)
sys.speed (is unset)
>nvshow fb.enable
fb.enable = on
>echo ${fb.enable}
on
>

113

nvunset
nvunset — Clears non-volatile parameter

Synopsis
nvunset {variable}

Options
variable A non-volatile variable name

Description
Unsets a non-volatile variable so the default value will be used.

114

115

Chapter 15. OS manipulation commands
These are the commands to start and manipulate loaded executable images entries and are available from the shell command
line of ABLE from version 1.55 and later.

These commands are deprecated since ABLE version 1.50. Their functionality has altered somewhat and they are imple-
mented as shell functions.

116

boot
boot — Starts loaded OS images

Synopsis
boot [--help] [--version]

Options
--help Display short help message and exit

--version Display the version of the boot command and exit

Description
This command starts execution of a previously loaded OS image. Its operation is described in Section 6.7.1, “The "setargs,
load and boot" method”. The arguments passed to the image are set with the setargs command.

Example 15.1. Using the boot command

>boot
boot: an image must be loaded with the load command first
>load (tftpboot)batty
tftp: attempting bootp
bootp: sending request
bootp: serverip: 192.168.7.1
bootp: netmask: 255.255.255.0
bootp: serverip: 192.168.7.1
bootp: netmask: 255.255.255.0
bootp: address: 192.168.7.29
>boot
Simtec Board Test Tool, Version 0.23
(c) 2005 Simtec Electronics

EB2410ITX (BAST) Test Suite
...

See also
setargs.

load.

117

load
load — Load executable images

Synopsis
load {file...}

Options
file File paths to load

Description
This command is used to load OS files which can be started using the boot command. The way a file is loaded is determined
by the files type. The file type is found using the internal detection code. The type of a file may be examined using the
file command.

The Section 6.7, “Starting an Operating System” provides a description of using this command to start an operating system.

See also
setargs.

boot.

file.

118

showargs
showargs — Shows arguments to be passed to any booted OS

Synopsis
showargs

Description
Shows arguments to be passed to an OS started with the boot command.

Example 15.2. Using the showargs command

>showargs
BOOTARGS=root=/dev/hda3
>

119

setargs
setargs — Sets arguments to be passed to an OS started with the boot command

Synopsis
setargs {arguments...}

Options
arguments Arguments to be passed to OS

Description
Sets arguments to be passed to an OS started with the boot command.

Example 15.3. Using the setargs command

>showargs
BOOTARGS=root=/dev/hda3
>setargs root=/dev/hdc1 console=ttySAC0,115200
>showargs
BOOTARGS='root=/dev/hdc1 console=ttySAC0,115200'
>

120

121

Chapter 16. Debugging commands
These are commands used to debug issues with ABLE and manipulating specific system functions. Some of these commands
may not be available in all configurations and platforms.

122

dump
dump — Displays an area of memory in hex dump

Synopsis
dump {start} [end]

Options
start Memory address to dump from in hex. Address is in logical memory space.

end Last memory address to dump in hex. Address is in logical memory space.

Description
Use to display the contents of a memory area in a hex dump. The output will be put through a pager and can be aborted with q.

Example 16.1. Using the dump command to examine memory

This example shows the dump command being used to display the first 4KB of memory. The output is aborted with q after
the first page.

>dump 0 1000
00000000: e59ff034 e59ff014 e59ff014 e59ff014 : 4...............
00000010: e59ff014 e59ff014 e59ff014 e59ff014 :
00000020: f004458c f00410fc f00444d4 f004441c : .E.......D...D..
00000030: 00000000 f004464c 00000000 f0004008 :LF.......@..
00000040: ffffffff ffff7fff ffffffff ffffffff :
00000050: ffffffff ffffffff ffffffff ffffffff :
00000060: ffdfffff ffffffff ffffffff ffffffff :
00000070: dfffffff ffffffff ffffffbf ffffffff :
00000080: 7fffffff ffffffff ffffffff ffffffff :
00000090: ffffffff ffffffff ffffffff dfffffff :
000000a0: ffffffdf ffffffff dfffffff ffffffff :
000000b0: ffffffff ffffffff ffffffff ffffffff :
000000c0: ffffffff ffffffff ffffffff ffffffff :
000000d0: ffffffff fff7ffff ffffffff 7fffffff :
000000e0: ffffffff ffffffff ffffffff ffffffff :
000000f0: ffffffff ffffffff ffffffff ffffffdf :
00000100: ffffffff ffffffff ffffffff ffffffff :
00000110: ffffffff ffffffff ffffffff ffffffff :
00000120: ffffffff ffffdfff ffffffff ffffffff :
00000130: ffffffff ffffffff ffffffff ffffffff :
--MORE--
>

See also
peek, poke, memset.

123

memset
memset — Set range of memory to a specific value.

Synopsis
memset {address} {length} [value]

Options
address Start address of memory to set in hex

length Length of area to set in hex

value Value to set memory region to in hex (defaults to 0 if unspecified)

Description
This command alters an area of memory starting at address and spanning the specified length to the specified value.
The address specified is dependant on the machine architecture and is the translated by the MMU.

See also
peek, poke, dump.

124

nand
nand — Display contents or OOB data from a range of NAND blocks.

Synopsis
nand [--help] [--version] [-b, --block {block}] [-s, --start {block}] [-e, --end {block}] [-p, --page {block}] [-r, --
read] [-o, --oob]

Options
--help Display commands syntax then exits

--version Displays commands version then exits

-b, --block block Selects start and end values for a single block of NAND.

-s, --start block Selects start block of NAND.

-e, --end block Selects end block of NAND.

-p, --page page Selects start and end values for a single page of NAND.

-r, --read Read NAND data from selected block range.

-o, --oob Read the OOB data from selected block range.

Description
This command aids in debugging NAND devices. Both the data and out of band attribute data can be examined. The range
of data to be show can be selected by block, block range and page.

Example 16.2. Using the nand command to display a range of NAND blocks

>nand -s 1 -e 2 -r
Reading 0x00000020
00004000: 20031985 0000000c e41eb0b1 e0011985 :
00004010: 00000034 755c292f 00000001 00000000 : 4.../)\u........
00004020: 00000002 45b4fcbc 0000080c fe565ec6 :E.....^V.
00004030: 30cb53b0 656c6261 3133322d 6e69622e : .S.0able-231.bin
00004040: e0021985 000013a6 fae16f87 00000002 :o......
00004050: 00000001 000081a4 03f603f6 00029058 :X...
00004060: 45b4fcbc 45b4fcbc 45b4fcbc 00000000 : ...E...E...E....
00004070: 00001362 00004000 00000006 877ec7af : b....@........~.

...

00007d90: 276d1d3a ea156311 574dc3e6 5e3314c1 : :.m'.c....MW..3^
00007da0: 60df5137 00e50d58 112a0370 8f49def0 : 7Q.`X...p.*...I.
00007db0: 5f1cf463 555addcf be72b4d0 81c75c16 : c.._..ZU..r..\..
00007dc0: cdce76ff 937b83e0 8db7e6c3 d17ba9cf : .v....{.......{.
00007dd0: 7efa4ba5 670228e1 2d2ea80a 2c0e019a : .K.~.(.g...-...,
00007de0: fd6da4d2 07e19fe8 c04541ae bf2d7557 : ..m......AE.Wu-.
00007df0: fc6f7d52 f8ae87cc 5b05aedc f88eaa4d : R}o........[M...
>

125

peek
peek — Examine memory location

Synopsis
peek [[p] | [v]] [[b] | [h] | [w]] [rpt {count}] [--help] [--version] {address}

Options
p Interpret address as physical.

v Interpret address as virtual (the default if not specified).

b Byte (8bit) wide read.

h Half word (16bit) wide read.

w Word (32bit) wide read (default if not specified).

rpt count Repeats the read count times.

address Memory address to read in hexadecimal.

Description
This command retrieves a memory location and prints it in hexadecimal. The address specified is dependant on the machine
architecture and is the translated by the MMU.

The p option causes the physical address specified to be translated into a virtual address suitable for use within ABLE, the
virtual translated address is shown during display.

See also
poke, dump, memset.

126

poke
poke — Poke memory location

Synopsis
poke [[p] | [v]] [[b] | [h] | [w]] [[eor] | [orr] | [bic] | [set]] [rpt {count}] {address} {value}

Options
p Interpret memory address as physical location.

v Interpret address as virtual (the default if not specified).

b Byte (8bit) wide read.

h Half word (16bit) wide read.

w Word (32bit) wide read (default if not specified).

eor Exclusive or the value with the current contents of memory.

orr Or the value with the current contents of memory.

bic Clear the bits of the memory location which are set in value.

set Alter the memory to the value.

rpt count Repeats the read count times.

address Memory address to read in hexadecimal.

value Value to set in hexadecimal.

Description
This command alters a memory location to the specified value. The address specified is dependant on the machine architecture
and is the translated by the MMU.

The p option causes the physical address specified to be translated into a virtual address suitable for use within ABLE, the
virtual translated address is shown.

See also
dump, peek, memset.

Part III. External Command Reference
Part III lists the external commands available. The commands have their own documentation in addition to that provided here.

Each command is documented in the standard UNIX® manual page layout. The page is separated into several parts:

Name The name of the command and its purpose.

Synopsis Command synopsis which may illustrate several invocations.

Options This part is only present if the command has arguments. The command arguments are listed together with
a description.

Description Describes the detailed use of the command.

See also This optional section gives references to other commands which may be relevant.

Conventions used in this part:

• command text.

• {arguments} within { } are required.

• replaceable text for arguments.

• [arguments] within [] are optional.

• argument | argument separated by | cannot be used together.

• argument... is repeatable

• [expression]... entire expression is repeatable.

Table 10. Commands in alphabetical order

Command Purpose

display(1) Display bitmap images on a framebuffer.

fbset(1) Set a framebuffers video mode and timings.

129

Chapter 17. Framebuffer commands

130

display
display — Display a bitmap image on framebuffer.

Synopsis
display [-d, --dev device] [-q, --quantize method] [-x x] [-y y] [-w, --width width] [-h, --height height] [--delay
time] [--help] [--version] file...

Options
-d, --device The output device on which to display the image. This defaults to (fb0)

-q, --quantize Select the palette quantization method used for 8 bit per pixel or lower output devices.

p per pixel
t table
l linear

-x x co-ordinate to place image on screen.

-y y co-ordinate to place image on screen.

-w, --width width of image on screen.

-h, --height height of image on screen.

--delay time to delay between displaying each image.

--help display short helptext and exit

--version display commands version and exit

Description
The display tool is used to display bitmap image files on ABLE video framebuffers. The tool automatically detects the source
image file format and determines the best colour match.

The target framebuffer may be selected from the available devices, aliases to suitable devices are created and the first alias
(fb0) selected as the default.

The target framebuffer depth (number of bits used to represent a pixel) may be 1, 2, 4, 8, 16, 24 or 32bits.

The source image may be in the BMP, JPEG or PNG image formats. The image file may additionally be compressed with
the gzip tool.

The source image colour depth is unconstrained by the display command and all images are upsampled to a 32bit depth. If
the source image uses indexed colour and has a palette and the framebuffer is in an indexed colour mode the images palette
will be applied to the framebuffer.

When an image has to be quantised to a framebuffer depth using indexed colours the quantisation method may be selected.
This process, by definition, reduces the quality of an image by reducing the number of colours available. This will introduce
numerous image artefacts on high colour images such as photographs.

If lower framebuffer depths are to be targeted explicitly reducing the source images colour depth, with an external program,
is recommended as this will produce superior colour conversion.

The quantisation is performed using the framebuffers current palette. The methods available are:

• The per-pixel method performs, for every pixel, a linear Euclidean distance calculation for each colour in the palette to
determine the closest match. This is the most accurate and slowest method.

131

• The table method constructs a reduced depth linear colour cube table (5 bits for each R,G,B element) and computes the
closest Euclidean colour distance for each entry in the table. Each pixel in the source image is then reduced in depth and
looked up in this table. This method is less accurate than the per-pixel method but has greatly improved performance.
This method is the default.

• The linear method simply assumes the palette is the default linear colour cube (3:3:2 - RGB) and truncates each pixel
value appropriately. This method is very fast but gives poor results on anything but simple images with few colours.

Example 17.1. Using the display command

This shows using the display command on the EB2410ITX to display a bitmap file from a tftp server.

>display (tftpboot)logo.bmp
>

Simtec logo displayed with the display command on an EB2410ITX framebuffer

See also
fbset(1).

132

fbset
fbset — Set a framebuffers video mode and timings.

Synopsis
fbset [-s, --show] [-i, --info] [-d, --dev device] [-x, --xres x] [-y, --yres y] [--depth depth] [--list] [--help] [--version]
mode

Options
-d, --device The output device on which to set the parameters. This defaults to (fb0)

-s, --show Show current settings this is the default if no other option is set.

-i, --info Show framebuffer information.

-x, --xres x resolution to set.

-y, --yres y resolution to set.

--depth The depth in bits per pixel (1,2,4,8,16 and 32 are the common values).

--list List all the built in modes.

--help fbset short helptext and exit

--version fbset commands version and exit

Description
The fbset tool is used to set a framebuffers video mode and timings. The tool has an internal list of suitable default video
modes which can be selected by name.

Example 17.2. Using the fbset command

This shows using the fbset command to set an 800 x 600 mode at 60Hz refresh and 16 bits per pixel.

>fbset --depth 16 800x600-60
>fbset --show
mode "800x600-60"
 # D: 40.000 MHz, H: 37.878 KHz, V: 60.315 Hz,
 geometry 800 600 0 0 8
 timings 25000 88 40 23 1 128 4
endmode
>

See also
display(1).

133

Chapter 18. I2C commands

134

i2c-rd
i2c-rd — Read from an I2C® device.

Synopsis
i2c-rd [--bus bus] [--help] [--version] address [length]

Options
--bus allows the specification of which I2C® bus to use if several are available on a system. This parameter defaults

to the first bus (0).

--help display short helptext and exit

--version display commands version and exit

address The 7bit I2C® bus address to read from.

length The number of bytes to read. The default is one.

Description
Read one or more bytes from an I2C® device.

Example 18.1. Using the i2c-rd command

To read a byte of data from a simtec power management unit you can execute

>i2c-rd 0x6b
Reading 1 bytes from bus 0xe0075224 at address 0x6b
53
>

See also
i2c-scan(1).

i2c-wr(1).

135

i2c-wr
i2c-wr — Write to an I2C® device.

Synopsis
i2c-wr [--bus bus] [--help] [--version] address value...

Options
--bus allows the specification of which I2C® bus to use if several are available on a system. This parameter defaults

to the first bus (0).

--help display short helptext and exit

--version display commands version and exit

address The 7bit I2C® bus address to write to.

value The value to be written, at least one value must be given, an empty write is not permitted.

Description
Write one or more bytes to an I2C® device.

Example 18.2. Using the i2c-wr command

To write a byte of data to the first register in a simtec power management unit you can execute.

>i2c-wr 0x6b 0x00 0x01
Writing 2 bytes to bus 0xe0075224 at address 0x6b
00 01
>

See also
i2c-rd(1).

i2c-scan(1).

136

i2c-scan
i2c-scan — Scan all available I2C busses for devices.

Synopsis
i2c-scan

Description
Scan all available I2C busses for devices.

Example 18.3. Using the i2c-scan command

i2c-scan
I2C Bus Scan V1.04 Copyright 2006 Simtec Electronics
--

found 1 busses:
Enumerating bus 0 (0xe0075224):

 0 1 2 3 4 5 6 7 8 9 A B C D E F
00: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 49 -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

See also
i2c-wr(1).

137

Chapter 19. Miscellaneous commands

138

ablefis
ablefis — Flash Information Services (FIS) tool for ABLE.

Synopsis
ablefis

Description
ABLE supports the use of Flash Information Services (FIS) partitions placed in the NOR flash of some Simtec Electronics
boards. The ablefis tool allows the user to manipulate these tables and arrange the flash in any way they choose.

Warning

The ABLE boot loader partition must never be removed or altered. Moving or altering this partition will corrupt
the boot loader and the system will no longer start (see Simtec Electronics website for details on recovering such
systems).

Example 19.1. Starting ABLE FIS

>(tftpboot)ablefis
ABLE RedBoot FIS Partition Tool, V0.20
(c) 2003 Simtec Electronics

Machine is BAST
Flash: SST 39LF160 [0x00BF, 0x2782]
read valid RedBoot FIS table
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00080000 -> 001ff000: Namedspace

Free space:

commands:
 p - print current table
 d - delete partition
 e - edit partition
 x - extend table (add new partititon)
 s - shorten table (remove last partition)
 w - write table to flash
 q - quit
main>

When executed the ABLE FIS tool prints its introduction banner including its version number.

ABLE RedBoot FIS Partition Tool, V0.20
(c) 2003 Simtec Electronics

This is followed by a brief summary of the flash device in use and the system name.

Machine is BAST
Flash: SST 39LF160 [0x00BF, 0x2782]

139

The current FIS table is displayed showing the partition numbers, sizes and any free space.

Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00080000 -> 001ff000: Namedspace

Free space:

Finally a brief list of possible commands is shown followed by the command prompt.

commands:
 p - print current table
 d - delete partition
 e - edit partition
 x - extend table (add new partititon)
 s - shorten table (remove last partition)
 w - write table to flash
 q - quit
main>

The command prompt shows which menu is currently active within the tool and allows easy navigation. If there is no valid
FIS table already configured the tool will create a default.

Example 19.2. ABLE FIS creating a default FIS table

ABLE RedBoot FIS Partition Tool, V0.20
(c) 2003 Simtec Electronics

Machine is BAST
Flash: SST 39LF160 [0x00BF, 0x2782]
did not find valid RedBoot FIS table on device, creating new
Created default table
Partitions (2 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)

commands:
 p - print current table
 d - delete partition
 e - edit partition
 x - extend table (add new partititon)
 s - shorten table (remove last partition)
 w - write table to flash
 q - quit
main>

Warning

It is essential to realise that the system will no longer boot if the ABLE partition is altered or written to.

Main Menu
The main menu

140

commands:
 p - print current table
 d - delete partition
 e - edit partition
 x - extend table (add new partititon)
 s - shorten table (remove last partition)
 w - write table to flash
 q - quit

is the root for all other operations.

This menu is indicated by its "main>" prompt. As on all menus the "h" will redisplay all the commands available.

The "q" command will quit the program and return to ABLE.

The "p" command will print the current table, this table will not be written to the flash device until the "w" command is used.

The "d" command will prompt for a partition number and remove it from the table, this command returns to the main menu.

Example 19.3. Removing a partition from a FIS table

main> p
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00080000 -> 00080000: Unused 2

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main> d
Which partition to delete (0-2) ?2
free_space: could not find allocated area 0x00080000->0x00080000
Deleted entry
main> p
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00000000 -> 00000000: Unused 2

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main>

The "e" command will prompt for a partition number to edit and change to the the section called “Edit Menu”

141

Example 19.4. Adding and Editing a FIS table partition

main> x
Adding partition 2
main> p
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00080000 -> 00080000: Unused 2

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main> e
Which partition to edit (0-2) ?2
Partition 2:
 Name = Unused 2
 Flash Address = 0x00080000
 Flash Length = 0x00000000
 Data Execution Base = 0x00000000
 Data Execution Entry = 0x00000000
 Data Length = 0x00000000

Edit commands:

 n - edit name
 p - edit position in flash
 d - edit data-length
 b - edit execution base
 e - edit execution address
 r - return to main menu
 s - show parition information again
 h - print this help message
edit 2>

The "x" command will add a new partition in the next available numerical partition number.

Example 19.5. Adding partition to FIS table

main> p
Partitions (2 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main> x
Adding partition 2
main> p
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00080000 -> 00080000: Unused 2

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main>

The "s" command will remove the last partition in the table.

142

Example 19.6. Shortening a FIS table

main> p
Partitions (3 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker
 02: 0x00000000 -> 00000000: Unused 2

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main> s
free_space: could not find allocated area 0x00000000->0x00000000
main> p
Partitions (2 of 16):
 00: 0x00000000 -> 00080000: ABLE
 01: 0x00000000 -> 00000000: Partition Marker

Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
main>

The "w" will write the current partition table to the flash. ABLE will not re-read these changes until the system is reset.

Example 19.7. Writing current FIS partition table

main> w
Writing new FIS table to flash
Erasing device: . done
Writing data: . done
Verifying data: . done
Done. Changes will not take effect until next reset
main>

Edit Menu

The edit menu

Edit commands:
 n - edit name
 p - edit position in flash
 d - edit data-length
 b - edit execution base
 e - edit execution address
 r - return to main menu
 s - show parition information again
 h - print this help message

allows for the manipulation of a specific FIS partition. The number after the "edit" prompt indicates which partition is being
edited. The "h" command wil redisplay the available commands and the "q" command will return to the main menu.

The "n" command will edit the name of the partition up to a maximum length of 15 characters.

143

Example 19.8. Editing the name of a FIS partition

edit 2> s
Partition 2:
 Name = Unused 2
 Flash Address = 0x00080000
 Flash Length = 0x00000000
 Data Execution Base = 0x00000000
 Data Execution Entry = 0x00000000
 Data Length = 0x00000000

edit 2> n
Enter new name for parititon (max 15 characters): BootSpace
edit 2> s
Partition 2:
 Name = BootSpace
 Flash Address = 0x00080000
 Flash Length = 0x00000000
 Data Execution Base = 0x00000000
 Data Execution Entry = 0x00000000
 Data Length = 0x00000000

edit 2>

The "p" command changes the starting position and length of the partition within the flash.

Example 19.9. Changing the length of a partition.

edit 2> s
Partition 2:
 Name = BootSpace
 Flash Address = 0x00080000
 Flash Length = 0x00000000
 Data Execution Base = 0x00000000
 Data Execution Entry = 0x00000000
 Data Length = 0x00000000

edit 2> p
Free space:
 0x00080000 -> 0x001ff000 (0x0017f000 bytes)
Current position is 0x00080000 -> 00080000 (0 bytes)
New value for start position in flash (0x00080000) ?
New value for length in flash (0x00000000) ?17f000
edit 2> s
Partition 2:
 Name = BootSpace
 Flash Address = 0x00080000
 Flash Length = 0x0017f000
 Data Execution Base = 0x00000000
 Data Execution Entry = 0x00000000
 Data Length = 0x00000000

edit 2>

The d option changes the data length of the partition
The b option changes the data execution base of the partition
The e option changes the data execution address of the partition
The s option shows information on the partition being edited.

144

batty
batty — Hardware unit test tool for ABLE.

Synopsis
batty [--nomem] [--nonet] [--nocore] [--novideo] [--noadc] [--nocpld] [--noextserloop] [--noserial] [-s, --sbqs] [-i indent]
[--help] [--version]

Options
--nomem Do not perform the memory tests.

--nonet Do not perform networking device tests.

--nocore Do not perform core system tests.

--novideo Do not test video devices.

--noadc Do not test the ADCs.

--nocpld Do not test the core system logic.

--noextserloop Do not test the serial external loopback.

--noserial Do not test serial devices.

-i Adjust the indentation level when operating in human readable mode.

-s, --sbqs Enable SBQS formatting mode.

--help Show basic help message and exit.

--version Show batty version and exit.

Description
Batty is an ABLE tool which performs hardware unit tests. It runs on all platforms. The number and nature of its tests vary
between platforms depending on factors such as availability of hardware and features preset. To be used effectively batty
must be run on ABLE versions later than 2.05.

The latest version is usually available either from the ABLE support page or the specific board support page on the Simtec
Electronics website.

Example 19.10. Starting batty from the command line

A typical execution of batty on an EB2410ITX. On this particular platform a fairly small number of tests are performed,
specifically a series of memory tests and a verification that the ABLE stored in flash is viable. The DONE line shows the
number of tests attempted and the number passed along with any warnings.

>batty
Simtec Board Test Tool, Version 1.00
Copyright 2005-2009 Simtec Electronics

BAST (EB2410ITX) Test Suite

Testing S3C24XX CPU Core
 CPU ID 32410002, OK [S3C2410A]

Testing S3C24XX 4kB internal SRAM block
 Pattern: all ones
 Pattern: all zeros

145

 Pattern: alternate zero/ones (LSB set)
 Pattern: alternate zero/ones (LSB unset)
 Writing address to each location

Testing system RAM [0x00400000..0x07a00000]
 Pattern: all ones
 Pattern: all zeros
 Pattern: alternate zero/ones (LSB set)
 Pattern: alternate zero/ones (LSB unset)
 Writing address to each location

Testing ABLE CRC
 CRC OK

Testing ABLE version information
 Version 252
 Release 2009012101
 Supported machine number 3
 Supported machine number 6
 Supported machine number 9
 Supported machine number 11

Testing CPLD registers
 CPLD ID register (value 00) OK

Hardware voltage monitoring
 Vcore is 1.959V (raw 608) []

Testing NE2000
 MAC Address 00:11:ac:00:01:6a

Testing Davicom DM9000 ID 0a46, 9000 rev 01
 MAC Address 00:01:3d:00:01:6a
 Verifying packet RAM.
 Checking with zeroes
 Checking with ones
 Checking with alternation (lsb=0)
 Checking with alternation (lsb=1)
 Checking with addresses
 Checking with zeroes once more (to clear packet ram)

Testing 16550 style UART
 Testing UART presence
 Testing internal loopback
 Testing external loopback
 External serial loopback test disabled. Assuming success.

Testing 16550 style UART
 Testing UART presence
 Testing internal loopback
 Testing external loopback
 External serial loopback test disabled. Assuming success.

Checking that all 16550s are unique (2)
UART blocks are unique

DONE: 27 tests, 27 ok, 0 failed, 0 warnings
PASSED: all tests OK
>

146

detect-large-nand
detect-large-nand — Shows if boot NAND device has 128KiB blocks.

Synopsis
detect-large-nand [-c chip] [-v, --version]

Options
-c Select the chip to examine defaults to 0.

-v, --version Show detect-large-nand version and exit.

Description
Detect-Large-Nand is an ABLE tool which will return zero (success) if the primary NAND device in a system has 2048 byte
pages. It will return one (failure) if the NAND device has 512 byte pages, and two (error) if some issue prevents the tool from
detecting the NAND properly. Possible errors encountered by the tool include being unable to detect a NAND chip, being
unable to identify the hardware type, or being too old a version of detect-large-nand to recognise a particular NAND device.

The latest version is usually available either from the ABLE support page or the specific board support page on the Simtec
Electronics website.

Example 19.11. Using detect-large-nand from the command line

>detect-large-nand
NAND: Boot configuration 1
NAND: Scan found ID ec,da
NAND: Scan found ID 00,00
NAND: Chip is unknown
NAND: Scan found ID 00,00
NAND: Chip is unknown
SUCCESS Found large page NAND
>echo $?
0
>

Part IV. Creating external commands
ABLE has the ability to execute commands which are not built-in. Simtec Electronics use this capability to add functionality
which is not essential within the core of ABLE.

The provision for adding additional external commands is available to any user. This provision is purely a courtesy and Simtec
Electronics offer no guaranties or warranty for fitness for purpose to any program generated with the tools and library code
provided.

It should be noted ABLE is not an operating system and provides only basic support for external programs.

149

Chapter 20. Tools and libraries
To create ABLE commands it is assumed they will be written in the C language and be compiled and linked to object code
with a compiler.

It is not possible to self host the tools for creating ABLE commands on the target platform. Development is done on a host
Linux® system and the output built for the target.

It is possible to create working ABLE commands without using the tools and libraries provided by Simtec Electronics but
this is not directly supported.

20.1. Obtaining a suitable toolchain
Simtec Electronics provide a precompiled GNU toolchain suitable for use with several Linux® distributions. There is cur-
rently no support for the Windows® environment. The host systems are assumed to be either 32 or 64bit X86 instruction set
machines and the appropriate binary package should be installed.

The currently supported compiler is GCC 4.2.4 with binutils 2.17. Other versions may be provided but these have not yet
been verified.

The toolchains are installed in /opt/simtec/tools/ and are available in several packaging formats. The toolchain
packages may be downloaded from the Simtec Electronics website [http://download.simtec.co.uk/] or obtained on DVD by
request.

The toolchains are generated with the crosstool-ng [http://ymorin.is-a-geek.org/dokuwiki/projects/crosstool] program. The
appropriate source package and configuration files used to generate the compilers have been provided to ensure compliance
with the licences of the software.

The packages for and systems are installed using the dpkg command. e.g.

dpkg -i simtec-cross-gcc42-armel_4.2.4-1_amd64.deb

The tar files should be unpacked in the root directory as a super user.

tar -zxf simtec-cross-gcc42-armel_4.2.4.i386.tar.gz -C /

20.2. Obtaining development libraries and headers
The ABLE C library, GCC support library and the base libraries packages should be installed. These are available from the
ABLE resources web page [http://www.simtec.co.uk/products/SWABLE/resources.html#libraries].

These packages will install, in /opt/simtec/able/, the necessary binary libraries, headers and scripts to build ABLE
commands.

http://download.simtec.co.uk/
http://download.simtec.co.uk/
http://ymorin.is-a-geek.org/dokuwiki/projects/crosstool
http://ymorin.is-a-geek.org/dokuwiki/projects/crosstool
http://www.simtec.co.uk/products/SWABLE/resources.html#libraries
http://www.simtec.co.uk/products/SWABLE/resources.html#libraries

150

151

Chapter 21. ABLE C Library
The C language does not have core support for simple operations such as input/output or string handling. This is instead
provided by a “standard C library”, the ABLE implementation of this standard is referred to as the ABLE C Library (or
just the C library).

The ABLE C library is a collection of headers and binary library components which provide not only the ISO “standard
C library” but also additional elements for some POSIX functions. The library is not however completely conformant to a
specific standard.

The ABLE implementations of some of this functionality may be limited or missing. These limits or omissions are primarily
due to the limited environment which a bootloader can reasonably be expected to provide. The ABLE C library documentation
packages contain a set of files describing each provided function in detail.

Table 21.1. ISO headers provided in ABLE C library

Header Contents

assert.h Contains the assert macro, used to assist with detecting logical errors and other types of bug in debugging
versions of a program.

ctype.h Contains functions used to classify characters by their types or to convert between upper and lower case
in a way that is independent of the used character set.

errno.h For testing error codes reported by library functions.

float.h Contains defined constants specifying the implementation-specific properties of the floating-point li-
brary.

inttypes.h For precise conversion between integer types.

limits.h Contains defined constants specifying the implementation-specific properties of the integer types.

locale.h For setlocale() and related constants. This is used to choose an appropriate locale.

math.h For computing common mathematical functions

setjmp.h Declares the macros setjmp and longjmp, which are used for non-local exits

signal.h For controlling various exceptional conditions

stdarg.h For accessing a varying number of arguments passed to functions.

stdbool.h For a boolean data type.

stdint.h For defining various integer types.

stdio.h Provides the core input and output capabilities of the C language.

stdlib.h For performing a variety of operations, including conversion, pseudo-random numbers, memory allo-
cation, process control, environment, signalling, searching, and sorting.

string.h For manipulating several kinds of strings.

time.h For converting between various time and date formats.

wchar.h For manipulating strings using wide characters. Support within ABLE is extremely limited.

wctype.h For classifying wide characters.

ABLE also supports a variety of non standard additional interfaces. These include a GNU compatible getopt implemen-
tation, a simple readline implementation and a basic TCP/IP sockets interface.

Table 21.2. Additional headers available in ABLE libc

Header Contents

alloca.h The alloca function allows memory to be allocated from the stack.

fcntl.h Routines to manipulate file descriptors.

libintl.h Internationalisation support for text strings, this is a stub and only supports the ASCII english repre-
sentation.

152

Header Contents

netdb.h Definitions and structures for using DNS nam eresolution.

poll.h Definitions and structures for the poll call.

strings.h BSD style string manipulation.

dirent.h Directory entry manipulation.

getopt.h Provide access to the long format getopt calls.

regex.h Functions and sructures for regular expression handling.

err.h Non standard BSD error display routines, implementations may be incomplete.

iconv.h character set conversions, limited support for ASCII, UTF-8, ISO88591 and CP437 character sets.

malloc.h Dynamic memory allocation and manipulation routines.

unistd.h Access to UNIX® standard routines.

Additional packages provide a set of “core” libraries which include zlib for compression support, libpng for png image
support and libjpeg for using jpeg images.

153

Chapter 22. A new ABLE command
The sections of this chapter will discuss the toolchain and libraries required, the environment in which external programs
are executed and the construction of an example command.

22.1. Execution environment
Only a single external program may be executed at any time, there is no memory protection and the program may alter any
part of the system it chooses (intentionally or otherwise). Because of this errors in programs are generally immediately fatal
so care must be taken to handle error situations appropriately.

External commands are executed as a separate ABLE task with their own stack and heap distinct from that of ABLE itself.
This ensures that ABLE should continue executing correctly even if an external command causes an abort. A simple abort
handler is provided which should return execution to ABLE in the event of an uncaught exception.

Programs are executed with the MMU (where available) running. A logical memory mapping of all physical memory is
presented starting at address 0. Programs are loaded at address 0x8000 and execution starts at an offset of four bytes (0x8004).
To be automatically recognised as an external program a magic value (0xAB1E0001) is used as the first four bytes of the file.

Apart from the magic number programs are a flat statically linked executable. If the tools and libraries provided by Simtec
Electronics are used, generating appropriate output from standard C and assembler is straightforward.

Programs are entered with register 0 containing the argument count, register 1 containing the argument string vector and
register 2 containing the environment pointer. The link register contains the address to return to. This calling convention is
effectively the result of an function call to the program using the Arm Procedure Call Standard (APCS).

Calls to ABLE functions are performed using a SoftWare Interrupt (SWI) interface the parameters to these called functions
are in the APCS format. The available functions and their interfaces are covered in the ABLE libc documentation.

If more details are required than provided here please contact Simtec Electronics support to discuss your requirements.

22.2. How the libraries fit together
The final executable is produced by linking the object files of the program, the C library, the compiler support library and
the crt0 stub object. The scripts provided in the ABLE C library package perform this linkage and final object copying to
obtain the final binary file which ABLE can execute.

The program objects are obviously generated by the application, standard ELF format intermediate objects are used for this.
Indeed the whole process generates a normal ARM ELF object (with specific properties) which is then flattened.

The C library provides generic support functionality to every C program and wrappers the calls to ABLE functionality in
a standard API.

The compiler support library is required to provide functions which the compiler itself emits.

The crt0 stub object is the code which sets up the execution environment from that passed by ABLE in a manner suitable
for use by the compiled C program.

22.3. A “hello world” command
The creation of a simple command written in C is straightforward. The user needs the appropriate toolchain and library
packages installed and a source file containing, at a minimum, a main function.

Example 22.1. Hello World command

The classic minimal example is the “hello world” program which simply outputs a simple test message.

#include <stdio.h>>

A simple command built with two objects

154

int
main(int argc, char**argv)
{
 printf("hello world\n");
}

This is may be compiled directly as: /opt/simtec/able/bin/arm-able-gcc -o hello hello.c

The hello program may now be copied to a location accessible by ABLE (for example a http or tftp server) and executed.
It will produce the expected result.

>hello
hello world
>

22.4. A simple command built with two objects
The hello world program presented in the previous section is a simple program merely serves to demonstrate the basics of
compiling a program. A more complex program with multiple objects, it is generally accepted, would require a make file
to manage dependancies.

Example 22.2. Example using a makefile

The hellogoodbye program is a trivial program which uses two objects and displays some simple messages.

/* hello.c */
#include <stdio.h>>

extern void goodbye(void);

void hello(void)
{
 printf("hello world\n");
}

int
main(int argc, char**argv)
{
 hello();
 goodbye();
}

/* goodbye.c */
#include <stdio.h>>

void goodbye(void)
{
 printf("goodbye world\n");
}

A simple example makefile which builds the hellogoodbye program from two objects (hello.o and goodbye.o). This
takes advantage of a provided makefile fragment which sets up the correct compiler variables (CC LD etc.).

hellogoodbye/Makefile
#

A simple command us-
ing floating point maths

155

ABLE hellogoodbye command

APP_VERSION=1.00

CFLAGS=-O2 -Wall -DAPP_VERSION=\"$(APP_VERSION)\"
LDFLAGS=

default location for install
INSTALL_PATH ?= $(shell pwd)

default location for clib
ABLE_CLIB ?= /opt/simtec/able

Standard ABLE application makefile support
include $(ABLE_CLIB)/app-Makefile

.PHONY: all clean install
all: hellogoodbye

hellogoobye: hello.o goodbye.o

clean:
 $(RM) hello.o goodbye.o hellogoodbye

install:
 cp hellogoodbye $(INSTALL_PATH)/hellogoodbye-$(APP_VERSION)

This example can be compiled with make. When executed it should produce the result:

>hellogoodbye
hello world
goodbye world
>

22.5. A simple command using floating point maths
Programs which require access to the ISO 9899:1999 math functions must link the math library using the -lm option to
the linker.

Example 22.3. Command using math functions

This is a simple program which performs operations on floating point numbers.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>
#include <math.h>

int
main(int argc, char **argv)
{
 int loop;
 double test_a;
 double test;
 double test_power;
 double test_sqrt;

A simple command us-
ing floating point maths

156

 test_a = 2.01;
 test = 1.01;

 for (loop = 0; loop < 10; loop++) {
 test = test + 0.5;
 test_power = test_power + pow(test_a, test);
 test_sqrt = test_sqrt + sqrt(test_power);
 }

 printf("Should be 2.01 : %g\n", test_a);
 printf("Should be 6.01 : %g\n", test);
 printf("Should be 218.5 : %g\n", test_power);
 printf("Should be 71.027 : %g\n", test_sqrt);

 return 0;
}

This is may be compiled directly as: /opt/simtec/able/bin/arm-able-gcc -lm -o floattset floattest.c

The floattest program may now be copied to a location accessible by ABLE (http or tftp server) and executed. The output
should be:

>hello
Should be 2.01 : 2.01
Should be 6.01 : 6.01
Should be 218.5 : 218.5
Should be 71.027 : 71.027
>

157

Appendix A. Non-Volatile Variables
Reference

These nvram variables are available and usable in ABLE version 2.20 or later. Any variables which are not available on all
platforms will be marked as such in their description section.

Each variable is documented in a format similar to the UNIX® manual page layout. The page is separated into several parts:

Name - The name of the variable and its purpose.
Description - Describes the variable in detail.
Platforms - This optional section describes the platforms which use the variable is present, if not present the variable is
available on all platforms.
See also - This optional section gives references to other variables which may be relevant.

Table A.1. Alphabetical list of non-volatile variables

Variable Purpose

boot.auto Enable auto boot

boot.cmd Command line to use for auto boot

boot.timeout Time to wait before auto boot

boot.fs The filesystems to be scanned by the autoboot command.

console.write Default Console output stream

console.read Default Console input stream

console.level Console logging level

console.password Interactive console password.

fb.enable Framebuffer driver - enable output

fb.output Framebuffer driver - output target

fb.x Framebuffer driver - Display X size (width)

fb.y Framebuffer driver - Display Y size (height)

fb.refresh Framebuffer driver - Display refresh frequency

ide.multi-limit IDE multiple sector read limit

shell.hist Shell history depth

sys.autoshadow Whether able will automatically moved into RAM at system start

sys.speed System speed set at start time

usb.enable USB system enable

usb.hubdepth USB system depth hubs should be searched for devices to

158

boot.auto
boot.auto — Enable auto boot

Description
If this variable is unset the default action is the same as if it were set to true. The automatic boot process is discussed in
Section 6.8, “Starting an Operating System Automatically”.

159

boot.cmd
boot.cmd — Command line to use for auto boot

Description
This variable is used as a command line to be automatically executed when the boot.auto variable is set to true and the
boot.timeout is set to non zero. If unset defaults to autoboot. The complete autoboot process is discussed in Section 6.8,
“Starting an Operating System Automatically”.

160

boot.timeout
boot.timeout — Time to wait before auto boot

Description
This variable is used to configure the number of seconds to wait for the user to abort the auto boot sequence when the boot.auto
variable is on. The complete autoboot process is discussed in Section 6.8, “Starting an Operating System Automatically”.

161

boot.fs
boot.fs — The filesystems to be scanned by the autoboot command.

Description
This variable is used to configure the names and ordering of the filesystems to be automatically scanned by the autoboot
command. If unset it defaults to "cd,hd,rom,tftpboot" e.g. try the CDROM, hard discs, NOR flash and then the network.

162

console.write
console.write — Default Console output stream

Description
Determines where console output will be sent. See console.read for details on setting the read stream. Note the read and write
sources do not have to be "balanced" and may be mixed as required e.g. write set to vga and read set to serial.

There are three console drivers available on every platform, the null driver which redirects all ABLE output nowhere so it
is not seen, the all-wr driver which sends all console output to any console driver capable of displaying it and the serial
driver which sends output to the console serial port (typically the first serial port on a system).

Full details on controlling the console system can be found in Chapter 5, ABLE Console.

The default, where no nvram variable is set, on all platforms since ABLE version 1.79 is the all-wr target.

Warning
This Variable has been renamed in ABLE versions 2.20 and later. In previous versions the variable was was called
"cons_write".

Platforms
EB2410ITX additional valid value is s3c2410x-video
EB110ATX additional valid value is vga
EB7500ATX additional valid value is vidc

163

console.read
console.read — Default Console input stream

Description
Determines where console input will come from. See console.write for details on setting the write stream.

There are three console drivers available on every platform, the null driver which produces no input so no buttons can be
pressed, the all-rd driver which accepts input from any console driver capable of producing it and the serial driver
which accepts input from the console serial port (typically the first serial port on a system).

The default, where no nvram variable is set, on all platforms since ABLE version 1.79 is the all-rd target.

Warning
This Variable has been renamed in ABLE versions 2.20 and later. In previous versions the variable was called
"cons_read".

Platforms
EB2410ITX additional valid value is usbkbd.
IM2440D20 additional valid value is usbkbd.
EB110ATX additional valid value is ps2kbd
EB7500ATX additional valid value is ps2kbd

164

console.level
console.level — Console logging level

Description
Sets the default console logging level. This can be altered after boot with console command.

165

console.password
console.password — Console password for interactive use

Description
The DES hash of the current password which allows for interactive access.

166

fb.enable
fb.enable — Framebuffer driver - enable output

Description
If set, the framebuffer device driver will be enabled and added to the list of selectable consoles. If clear, then the framebuffer
driver will not be initialised, and video console will not be selectable.

Platforms
EB2410ITX default is on i.e. framebuffer will be enabled
EB7500ATX default is on i.e. framebuffer will be enabled

167

fb.output
fb.output — Framebuffer driver - output target

Description
Determines the output device for framebuffers with multiple output ports.

Platforms
EB2410ITX default is vga i.e. output will be sent to vga socket

168

fb.x
fb.x — Framebuffer driver - Display X size (width)

Description
This determines how many pixels wide the video display console will be. See fb.y for the y resolution.

Platforms
EB2410ITX default is 640

169

fb.y
fb.y — Framebuffer driver - Display Y size (height)

Description
This determines how many pixels high the video display console will be. See fb.x for the x resolution.

Platforms
EB2410ITX default is 480

170

fb.refresh
fb.refresh — Framebuffer driver - Display refresh frequency

Description
This determines the framebuffer refresh rate.

Platforms
EB2410ITX default is 60

171

ide.multi-limit
ide.multi-limit — IDE multiple sector read limit

Description
If set, the value is used to limit the number of sectors read from an IDE drive in a single operation. With most drives this can
be left unset. Some drives have firmware which incorrectly report the number of sectors they can transfer (Quantum Fireball
TM series seem especially susceptible). This parameter allows the user to force ABLE to read a smaller number of sectors
than the drives reported capability. The smaller of this parameter and the drives reported maximum number of sectors is used.

Platforms
All Platforms with IDE ports

172

shell.hist
shell.hist — Shell history depth

Description
How many commands to remember in the shell history. The shell is the ABLE module which provides the command line.
The command line editor can remember several previous commands accessed by using the up arrow. This variable controls
how many previous commands are remembered. The Chapter 3, Command Line Interface covers the use of ABLE shell in
more detail.

173

sys.autoshadow
sys.autoshadow — Determines if ABLE will automatically moved into RAM at system start

Description
Set to on to shadow ABLE into memory at start time. See the shadow command for more details. If this is unset, then the
value will be determined by the amount of memory available, if more than 32Mbyte of memory is fitted the shadow will be
performed. This parameter is only available on platforms where ABLE can be directly executed from flash.

Platforms
EB2410ITX
EB7500ATX
EB675001DIP

174

sys.speed
sys.speed — System speed set at start time

Description
If set, the value is passed to the command sysspeed at system startup. If unset, the value is dependant on the type of board.
See the sysspeed command for more details.

Platforms
EB2410ITX numerous settings possible the default is 203MHz for the S3C2410-A20 and 266MHz for the S3C2410-A26.
IM2440D20 numerous settings possible the default is 400MHz for the S3C2440-A40.

175

usb.enable
usb.enable — USB system enable

Description
This determines if the USB subsystem is enabled. This allows USB devices to be used, required for the USB hid keyboard
driver.

Platforms
EB2410ITX default is on

IM2440D20 default is on

176

usb.hubdepth
usb.hubdepth — USB system depth hubs should be searched for devices to

Description
This determines how many hubs the USB system will scan looking for usable peripherals.

Platforms
EB2410ITX

IM2440D20

177

Appendix B. Changelog
Revision History
Revision 1.00 24th January 2003 VRS
Initial Release.
Revision 1.40 3rd February 2003 VRS
Updates to non volatile commands, addition of version command.
Revision 1.55 25th April VRS
Improved command references in Chapter 9, Core Commands.
Added nvram chapter to clarify non volatile usage.
Revision 1.73 17th September VRS
Improved Chapter 8, Upgrading.
Revision 1.80 18th November VRS
Updated commands .
Updated Appendix A, Non-Volatile Variables Reference.
Updated FAQ.
Revision 1.82 27th November VRS
Updated commands .
Updated Appendix A, Non-Volatile Variables Reference.
Updated FAQ.
Revision 1.95 10th March 2004 VRS
Updated devls command.
Updated Appendix A, Non-Volatile Variables Reference.
Removed FAQ future versions are online [http://www.simtec.co.uk/products/SWABLE/faq.html].
Revision 1.99 2nd August 2004 VRS
Added echo.
Updated Appendix A, Non-Volatile Variables Reference.
Revision 2.01 11th October 2004 VRS
Updated netif command.
Added ifconfig.
Updated Section 6.7, “Starting an Operating System”
Revision 2.08 13th April 2005 VRS
Added Chapter 2, Getting Started, Section 6.8, “Starting an Operating System Automatically”, Chapter 7, Networking
Updated Chapter 1, Overview, Chapter 3, Command Line Interface, Section 6.7, “Starting an Operating System”
Added boot.fs
Revision 2.20 17th January 2006 VRS
The ABLE 2.20 release is a significant milestone release which represents a greater expansion in capabilities than many
previous releases.

Updated to refer to ABLE version 2.20
Updated Chapter 2, Getting Started
Updated Chapter 3, Command Line Interface
Created Chapter 5, ABLE Console
Removed separate script chapter and moved contents into Chapter 3, Command Line Interface
Updated Part II, “Built-in Command Reference”
Updated Appendix A, Non-Volatile Variables Reference.
Created Appendix B, Changelog.
Revision 2.21 23rd February 2006 VRS
Minor editorial changes
Revision 2.22 21st March 2006 VRS
Updated to refer to ABLE version 2.21
Updated Section 6.7, “Starting an Operating System”
Updated Appendix A, Non-Volatile Variables Reference
Updated Part II, “Built-in Command Reference”
Revision 2.23 30th April 2006 VRS
Updated to refer to ABLE version 2.22
Updated Chapter 3, Command Line Interface
Revision 2.24 3rd June 2006 VRS
This version is the first edition of the printed book.

http://www.simtec.co.uk/products/SWABLE/faq.html
http://www.simtec.co.uk/products/SWABLE/faq.html

178

Updated to refer to ABLE version 2.24
Updated Section 6.7, “Starting an Operating System”
Updated Section 6.8, “Starting an Operating System Automatically”
Revision 3.00 11th Febuary 2009 VRS
The ABLE 2.50 release is a significant milestone release which represents a greater expansion in capabilities than many
previous releases.

• Updated to refer to ABLE version 2.50

• Complete reorganisation of parts, chapters and reference sections

• Removal of numerous obsolete command references.

• New builtin and external command references added. This removes the seperate documentation for the FIS tool, ROM
writing application and the I2C® tools.

179

Index
A
ABLE executable, 28, 39
ABLE shell, 13
Advanced Technology Attachment (see ATA)
Advanced Technology Attachment Packet Interface (see AT-
API)
AOUT, 28
ATA (Advanced Technology Attachment), 25
ATAPI (Advanced Technology Attachment Packet Interface),
25

B
batty, 28
BIOS, 3

C
command

ablefis, 138
autoboot, 44
batty, 144
boot, 30, 116
cat, 28, 100
cd, 10, 27, 94
console, 19, 20, 22, 46
cp, 101
date, 48
detect-large-nand, 146
dev, 49
dhclient, 88
display, 28, 130
dump, 122
dumpfile, 28, 102
echo, 74
exit, 75
fbset, 132
file, 9, 27, 27, 104
help, 11, 50
history, 52
host, 89
hwinfo, 36, 53
i2c-rd, 134
i2c-scan, 136
i2c-wr, 135
ifconfig, 35, 86
load, 30, 117
ls, 10, 27, 95
lsfs, 10
meminfo, 54
memset, 123
mii, 90
modules, 55
more, 105
mutexes, 57
nand, 124
nc, 91
nvclear, 108

nvsave, 12, 14, 109
nvset, 14, 110
nvshow, 112
nvunset, 14, 113
passwd, 58
peek, 125
pmu, 59
poke, 126
pwd, 10, 97
read, 76
reset, 60
sbcd, 61
set, 78
setargs, 30, 119
setdate, 62
setopt, 20, 63
settime, 64
sh, 79
shadow, 65
showargs, 118
showhz, 66
sleep, 80
sum, 106
sysmsg, 22, 67
sysspeed, 69
tasks, 70
test, 13, 17, 81
uname, 11, 71
version, 72

command line interface, 3, 9
conditionals, 13
editing, 9
filesystem, 9
help, 11
quoting, 9
variables, 14

accessing, 15
non-volatile (see non-volatile variables)
positional, 14, 15
simple, 14
special, 15
special meaning, 16

Compress file, 28
console, 5

D
DHCP (Dynamic Host Configuration Protocol), 26, 35, 35, 36,
36, 36, 36, 86, 86, 88, 88, 88

E
ELF, 28
EXT2, 26

F
FAT, 26
FFS, 26

G
Gzip file, 28

180

H
Hyperterm, 6, 6, 6

I
IDE (see ATA)
Integrated Drive Electronics (see ATA)
Internet Protocol (see IP)
IP (Internet Protocol), 35, 86, 87
ISO9660, 26, 26

L
Linux, 28

M
Minicom, 7, 7
modular system, 3
modules, 3, 5

N
NetBSD, 28
non-volatile variables, 14

boot, 5
auto, 158
cmd, 23, 23, 24, 159
fs, 161
timeout, 160

console
level, 22, 24, 46, 164
passwordl, 165
read, 5, 20, 23, 46, 163
write, 5, 20, 23, 46, 162

fb
enable, 166
output, 167
refresh, 170
x, 168
y, 169

ide
multi-limit, 171

shell
hist, 172

sys
autoshadow, 173
speed, 174

usb
enable, 175
hubdepth, 176

O
OpenBSD, 28
operating system, 3, 25

P
PCI, 35
PPP (Point to Point Protocol), 35

R
reset, 40, 60

hard, 5
romwrite, 28, 39, 39

S
Shell script, 17, 28
SLIP (Serial Line Internet Protocol), 35
S-Record, 28

T
TFTP (Trivial File Transfer Protocol), 26, 35, 35, 35, 36, 36,
36, 36, 39

U
UDP (User Datagram Protocol), 35
Universal Serial Bus (see USB)
USB (Universal Serial Bus), 5, 19, 25
User Datagram Protocol (see UDP)

X
XModem, 27, 27, 27, 27, 27, 27, 35

Z
zImage, 28

181

Colophon
This Document was prepared in Docbook XML [http://www.docbook.org/] using the GNU emacs text editor. The source was
combined with DocBook XSL Stylesheets [http://docbook.sourceforge.net/projects/xsl/] using an XSLT processor to produce
output in various formats.

For web output the Saxon XSLT processor [http://saxon.sourceforge.net/] was used to convert the docbook XML directly to
HTML.

For print output the Saxon XSLT processor [http://saxon.sourceforge.net/] was used to convert the docbook XML to Formatting
Objects (FO) XML.

For general print documents the FO XML is converted to PDF and Postscript with the Apache project FOP [http://
xmlgraphics.apache.org/fop/] utility.

For six by nine inch book output the Render X XEP digital typography tool was used to convert the FO XML to print ready
PDF output.

The cover designs were developed in the GNU Image Manipulation Program [http://www.gimp.org/] (GIMP).

http://www.docbook.org/
http://www.docbook.org/
http://docbook.sourceforge.net/projects/xsl/
http://docbook.sourceforge.net/projects/xsl/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://www.gimp.org/
http://www.gimp.org/

182

	ABLE User Guide
	Table of Contents
	Preface
	Part I. Usage
	Chapter 1. Overview
	Chapter 2. Getting Started
	2.1. Using hyperterm as a serial console
	2.2. Using minicom as a serial console

	Chapter 3. Command Line Interface
	3.1. Command line editing
	3.2. Simple commands
	3.3. Quoting
	3.4. Filesystem navigation
	3.5. Getting help
	3.6. Setting Options

	Chapter 4. The ABLE shell
	4.1. Conditional execution
	4.2. Shell variables
	4.2.1. Simple variables
	4.2.2. Non volatile variables
	4.2.3. Positional variables
	4.2.4. Special variables
	4.2.5. Accessing variables
	4.2.6. Variables with special meanings

	4.3. Functions
	4.4. Command substitution
	4.5. Shell script

	Chapter 5. ABLE Console
	5.1. Console drivers
	5.2. Setting parameters on serial drivers
	5.3. Configuring the console system
	5.4. Setting the logging level
	5.5. Practical use of the console system
	5.5.1. Basic serial debug console
	5.5.2. No console at all
	5.5.3. Displaying a logo and boot abort

	Chapter 6. Starting an Operating System
	6.1. Data sources
	6.2. Alias sources
	6.3. Network sources
	6.4. XModem source
	6.5. Navigating a filesystem
	6.6. How ABLE identifies files.
	6.6.1. ABLE shell script
	6.6.2. ABLE executable
	6.6.3. ARM Linux zImage
	6.6.4. ELF and AOUT files
	6.6.5. UNIX Compress files
	6.6.6. Gzip files
	6.6.7. Images, text and data files
	6.6.8. Motorola S-Record

	6.7. Starting an Operating System
	6.7.1. The "setargs, load and boot" method
	6.7.2. The "command line" method

	6.8. Starting an Operating System Automatically

	Chapter 7. Networking
	7.1. Finding a network interface
	7.2. Configuring a network interface
	7.3. Using the network to obtain files

	Chapter 8. Upgrading
	8.1. Upgrading a NAND based systems
	8.1.1. Obtaining Upgrades
	8.1.2. Applying the update

	8.2. Upgrading NOR based systems
	8.2.1. Obtaining Upgrades
	8.2.2. Loading the Upgrade
	8.2.3. Running the upgrade

	Part II. Built-in Command Reference
	Chapter 9. Core Commands
	autoboot
	console
	date
	dev
	help
	history
	hwinfo
	meminfo
	modules
	mutexes
	passwd
	pmu
	reset
	sbcd
	setdate
	setopt
	settime
	shadow
	showhz
	sysmsg
	sysspeed
	tasks
	uname
	version

	Chapter 10. Shell Commands
	echo
	exit
	read
	set
	sh
	sleep
	test

	Chapter 11. Network operations
	ifconfig
	dhclient
	host
	mii
	nc

	Chapter 12. File Navigation
	cd
	dumpfile
	pwd

	Chapter 13. File manipulation commands
	cat
	cp
	dumpfile
	file
	more
	sum

	Chapter 14. Non-volatile settings
	nvclear
	nvsave
	nvset
	nvshow
	nvunset

	Chapter 15. OS manipulation commands
	boot
	load
	showargs
	setargs

	Chapter 16. Debugging commands
	dump
	memset
	nand
	peek
	poke

	Part III. External Command Reference
	Chapter 17. Framebuffer commands
	display
	fbset

	Chapter 18. I2C commands
	i2c-rd
	i2c-wr
	i2c-scan

	Chapter 19. Miscellaneous commands
	ablefis
	batty
	detect-large-nand

	Part IV. Creating external commands
	Chapter 20. Tools and libraries
	20.1. Obtaining a suitable toolchain
	20.2. Obtaining development libraries and headers

	Chapter 21. ABLE C Library
	Chapter 22. A new ABLE command
	22.1. Execution environment
	22.2. How the libraries fit together
	22.3. A hello world command
	22.4. A simple command built with two objects
	22.5. A simple command using floating point maths

	Appendix A. Non-Volatile Variables Reference
	boot.auto
	boot.cmd
	boot.timeout
	boot.fs
	console.write
	console.read
	console.level
	console.password
	fb.enable
	fb.output
	fb.x
	fb.y
	fb.refresh
	ide.multi-limit
	shell.hist
	sys.autoshadow
	sys.speed
	usb.enable
	usb.hubdepth

	Appendix B. Changelog
	Index

